
VERSION 7.6.1

Stellent® Content Portlet Suite

Portlet Developer’s Guide

Copyright
© 1996–2005 Stellent, Inc. All rights reserved. No part of this document may be reproduced or transmitted in any
form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage
and retrieval system without written permission from the owner, Stellent, Inc., 7500 Flying Cloud Drive, Suite 500,
Eden Prairie, Minnesota 55344 USA. The copyrighted software that accompanies this manual is licensed to the
Licensee for use only in strict accordance with the Software License Agreement, which the Licensee should read
carefully before commencing use of this software.

Stellent is a registered trademark, and the Stellent logo, Stellent Content Server, Stellent Content Management,
Stellent Site Studio, Stellent Content Integration Suite, Stellent Content Portlet Suite, Stellent Desktop Integration
Suite, Stellent Dynamic Converter, Stellent Content Publisher, Stellent Inbound Refinery, and Stellent Image Server
are trademarks of Stellent, Inc. in the USA and other countries.

Adobe, Acrobat, the Acrobat Logo, Acrobat Capture, Distiller, Frame, the Frame logo, and FrameMaker are
registered trademarks of Adobe Systems Incorporated.

Apache is a registered trademark of the Apache Software Foundation. Stellent Content Integration Suite includes
software developed by the Apache Software Foundation (http://www.apache.org/).

BEA is a registered trademark, and WebLogic is a trademark of BEA Systems, Inc.

HP-UX is a registered trademark of Hewlett-Packard Company.

IBM, Informix, and WebSphere are registered trademarks of IBM Corporation.

Kofax is a registered trademark, and Ascent and Ascent Capture are trademarks of Kofax Image Products.

Linux is a registered trademark of Linus Torvalds.

Microsoft is a registered trademark, and Windows, Word, and Access are trademarks of Microsoft Corporation.

Oracle is a registered trademark of Oracle Corporation.

Plumtree is a registered trademark of Plumtree Software, Inc.

Portions Copyright © 1991-1997 LEAD Technologies, Inc. All rights reserved.

Red Hat is a registered trademark of Red Hat, Inc.

Sun is a registered trademark, and Solaris, Sun ONE, iPlanet, Java, and all Java-based trademarks are trademarks
of Sun Microsystems, Inc.

Sybase is a trademark of Sybase, Inc.

UNIX is a registered trademark of The Open Group.

Verity is a registered trademark of Verity, Incorporated.

All other trade names are the property of their respective owners.

Contents

1 / Introduction .. 5

Overview .. 5
CIS Administration Application Help system.. 7

2 / Stellent Portlets .. 9

Stellent portlets ... 9
Integration architecture .. 10
Portlet request handling sequence... 11

3 / Stellent Portlet Software Development Kit.. 12

SDK directory structure .. 12
Portlet development tips .. 13
Using the ReferencePortlets and PortletBuilder directories... 13
Using Ant to build portlet distributions... 14
Using the Stellent Portlet Tag Libraries .. 14

4 / Using the Stellent Portlet SDK ... 16

Portlet framework .. 16
Portlet construction ... 17
Creating a dispatch configuration file ... 17

Keywords .. 17
Active search dispatch configuration .. 18
Default Action node ... 19
Portlet ID node .. 19
Location node.. 19
Action Mappings node.. 19
Tiles-Definitions node ... 21

Getting a reference to the portlet API facade.. 22
Creating an action handler.. 22
Creating a Tile ... 24
Creating a controller .. 25

Index .. 26

Portlet Developer’s Guide Introduction
CHAPTER 1

Introduction

One key to implementing a corporate portal is ensuring a secure, personalized way
to aggregate data for consumption and processing. To provide the best possible
combination of a portal solution and a content management solution, Stellent has
created Stellent Content Portlet Suite.

With Stellent Content Portlet Suite, you can manage content creation and the
distribution process through a set of easy-to-use portlets. By providing access to
Stellent Content Server and Stellent Image Server, Stellent Content Portlet Suite
enables users to update, search, and view content in an easy, efficient way.

This guide is intended for application developers and programmers. It offers an
overview of the Stellent portlets, a presentation of their framework and architecture,
and information on using the Stellent Portlet Software Development Kit (SDK).

In this section:

! Overview

! CIS Administration Application Help system

Notes

! The information in this guide is subject to change as product technology
evolves and as hardware and operating systems are created and modified.

! Due to the technical nature of browsers, databases, web servers, and
operating systems, Stellent, Inc. cannot warrant compatibility with all versions
and features of third-party products.

Overview
The portlets in Stellent Content Portlets Suite can be enabled for different users,
based on their roles and permissions in the organization, and can be easily
customized. Users can browse or search content based on their permissions,
contribute new content (with the appropriate level of access), and view the progress
of their content through workflow.

Keeping portals up-to-date

The ease of use of Stellent Content Portlet Suite addresses a key issue: how to keep
content up-to-date. By driving content updates and additions through the portal
interface, the process of updating the portal becomes part of using the portal, as
opposed to a separate task performed outside of the portal.

Ease of use for contribution

With Stellent, content contribution is simple; users can contribute content by
checking in a document. Stellent takes care of normalizing the data with its ability to
convert files through templates to your specified markup for viewing in the portal.
5

Portlet Developer’s Guide Introduction
Ease of use for workflow

After checking in or updating content, users can track content status through the
portal. Users are notified right in the portal of their workflow status—whether to
review, edit, or approve content—with links to the content itself. They can click a
link to view a content item, approve or edit it, and then send the item on its way for
further workflow or publishing. When content is approved, it is published and made
available for viewing. Approved content can be published and expired at
predetermined times (as in the case of a promotional offer or classified ad).

Ease of use for browsing

Content can be presented to users based on their role in the organization. The
support team may log in to see a portlet that shows new updates and fixes, with
another portlet that shows current cases. These are automatically updated through
the Stellent Content Management System and require no manual intervention. They
appear to the users as titles with a link to the content; they may also have a short
summary of the content.

Ease of use for searching

Content can be easily searched based on metadata categories and full-text content
through one of the Stellent portlets. For instance, users may search for a “support
note” content type containing the word “policy,” which removes the need to search
through all other occurrences of the word “policy” in other content types. Stellent
provides separate portlets for basic and authenticated search. Stellent even
provides a portlet that allows users to save searches they use regularly.

Easy to administer

Stellent Content Server and Stellent Content Portlet Suite are easy to administer.
They can be set up and left to run indefinitely. Once you have decided your
metadata model and workflow paths, Stellent Content Server and Stellent Content
Portlet Suite can be installed and linked to the portal, and users can begin
contributing and viewing content.

Metadata Admin portlet

Stellent Content Portlet Suite includes the Metadata Admin portlet that allows you
to modify properties of the content server metadata fields, which affect the behavior
of the Contribution portlet. With the Metadata Admin portlet, an administrator can
specify which metadata fields users see, as well as the default value for each field.
Administrators can even hide metadata fields and specify what values should be set
for those items.

High performance

Stellent Content Portlet Suite is built on top of Stellent Content Integration Suite.
This powerful integration layer offers speedy asynchronous access to content.

Easy to customize

Stellent portlets are designed to be customizable. Customizing the portlets will help
you make the most of your portal investment. For example, to create a new portlet
to show content of a certain metadata value, you can copy the existing Browse
portlet, tweak one simple parameter, and publish the portlet.
6

Portlet Developer’s Guide Introduction
By integrating Stellent Content Portal Suite and your portal server with Stellent
Content Server, you provide an easy way to keep your portal up-to-date. You also
improve efficiency, lower costs, and increase your return on your portal investment.

CIS Administration Application Help system
With Stellent Content Portlet Suite built on top of Stellent Content Integration Suite
(CIS), you may need assistance with the CIS Administration Application, which is the
administration interface for CIS. Both online Help and the complete CIS Installation
Guide can be accessed from any of the CIS Administration Application screens.

! Each screen of the Administration Application has a Help icon, which you
can click to view a topic that describes the functionality of that screen.

! Once you have opened any Help topic, click the Show Navigation button
in the navigation bar to view the complete CIS Installation Guide online.

The online Help can be viewed in a web browser such as Internet Explorer or
Netscape Navigator, with conventional web browser controls (Back, Forward,
Refresh, and so on) used to navigate the Help system.

The online Help contains the following navigation options:

! Contents: The Contents tab contains an expandable list of Help topics. Click a
book icon to expand or collapse that section of the Help system and then
select the desired Help topic to view a topic.

! Index: The Index tab provides immediate access to individual Help topics by
keyword.
7

Portlet Developer’s Guide Introduction
! Search: The Search tab provides a full-text search of the Help system. Type
the word or phrase you are looking for and then click Go (or press Enter on
your keyboard).

! Favorites: The Favorites tab provides a means to save topics that you have
found useful and anticipate viewing again. (When viewing a topic, click
Favorites and then click Add to add the topic to your Favorites list.) The
Favorites tab does not display if your browser does not support the Java applet
used by the Help system.

The online Help also includes a toolbar with the following options:

Notes

! The Help systems use a secure Java applet to display the Contents, Index,
Search, and Favorites tabs. If the Java applet is not installed or enabled in the
web browser used to view Help, a JavaScript rendition of Help will display,
instead. If both Java and JavaScript are disabled in the web browser, the
browser will not be able to display Help.

! The Java applet is not supported by Internet Explorer on UNIX, Netscape 4.x
on Macintosh, Netscape 6.x on any platform, or by any machine running a
newer version of the Java Runtime Environment (JRE) 1.3.1_02. For these
browsers and operating systems, the JavaScript rendition of Help will display
(assuming it is not disabled in the browser).

Toolbar Definition

Highlights the title of the topic currently being viewed in the Contents tab.
Note: If you open a Help topic by clicking the Help button in a dialog box, the Show
Navigation button will display, instead.

Displays the topic that precedes the currently displayed topic. (The order of topics can be
seen on the Contents tab.)

Displays the topic that follows the currently displayed topic. (The order of topics can be seen
on the Contents tab.)

Opens a new, blank email message addressed to Stellent Technical Support, with the name
of the Help topic in the Subject line. Please use this feature to provide feedback to Stellent
on the topic itself or how the topic is documented.

Prints the currently displayed topic by using your web browser print feature.

Opens a PDF version of the CIS Installation Guide. You can read the PDF version online or
print it out, if you prefer.

Connects to the Stellent web site (www.stellent.com), where you can learn more about
Stellent products, upcoming events, and technical support.
8

Stellent Content Portlet Suite - Portlet Developer’s Guide Stellent Portlets
CHAPTER 2

Stellent Portlets

A portlet is a Java technology–based web component, managed by a portlet
container, that processes requests and generates dynamic content. Portlets are
used by portals as pluggable, user-interface components that provide a
presentation layer to information systems.

The Java Community Process has produced a specific standard for portlet
development: JSR 168 - Portlet Specification. The specification can be found at:
http://www.jcp.org/en/jsr/detail?id=168

Each portlet in Stellent Content Portlets Suite (CPS) conforms to this standard and
should run on any portlet container that supports this specification.

In this section:

! Stellent portlets

! Integration architecture

! Portlet request handling sequence

Important: Stellent Content Integration Suite (CIS) version 7.6 must be installed. CIS
7.6 uses the Universal Content and Process Management API (UCPM API), which
replaces the LW API used in CIS 7.2. (The two APIs are not compatible.) For more
information, see “Migrating from version 7.2” in the UCPM API Developer’s Guide
(ucpm-dev-guide.pdf).

Note: See the CPS JavaDoc for information on the Class/Interface, Field, and
Method descriptions. The JavaDoc is in the /docs/cps-javadoc.zip file.

Stellent portlets
Stellent Content Portlet Suite implements the following set of portlets that interact
with Stellent Content Server, Stellent Image Server, or both:

Stellent Content Server

! Library: Presents content to users based on their role in the organization.

! Search: Allows the user to perform a keyword or full-text search on the
content server and permits read-only access to the returned content.

! Saved Search: Allows the user to save frequently used queries.

! Contribution: Allows the user to contribute content to the content server.

! Workflow Queue: Notifies users of their workflow tasks.

! Authenticated Library: Presents content to users based on their role in the
organization, and provides read/write access to the returned content.

! Authenticated Search: Allows the user to perform a selected metadata and
keyword search on the content server and provides read/write access to the
returned content.

! Metadata Admin: Allows the user to modify the properties of custom
metadata.
9

Stellent Content Portlet Suite - Portlet Developer’s Guide Stellent Portlets
Stellent Image Server

! Image Server Search: Allows the user to perform a search on the image
server and permits read-only access to the returned content.

Stellent Content Server and Stellent Image Server

! Federated Search: Facilitates the integration of an image server with one or
more content servers and allows queries of all the repositories.

Each of these portlets requires that Stellent Content Integration Suite (CIS) be
installed and available. CIS provides a Java API into the content and image servers,
and is capable of running in either a J2EE application server environment (e.g.,
WebSphere or WebLogic) or a servlet container environment (e.g., Tomcat).

The portlets are consumers of standard content server services (IdcCommand
services), such as CHECKIN_UNIVERSAL and GET_SEARCH_RESULTS. However,
these services are not called directly by the dispatch handlers from the portlet
controller. Rather, the UCPM API abstracts the portlets from the details of talking to
the server. The UCPM API allows for rigid parameter validation, dynamic command
selection, and standardized integration with a J2EE environment.

Integration architecture
The Stellent portlets were developed using the JSR 168 standard (or leverages the
WebSphere environment), and use the UCPM API to communicate back to the
content server or image server. However, not every portal vendor supports the JSR
168 standard completely or in exactly the same way. Thus, CPS uses an API facade
to the portlet container which abstracts common operations, so our implementation
will work on a variety of platforms using the same handler code. Portlet actions are
mapped to a custom Model-View-Controller framework that uses the UCPM API to
perform the desired task.
10

Stellent Content Portlet Suite - Portlet Developer’s Guide Stellent Portlets
Portlet request handling sequence
As an example of request handling, here is the high-level sequence of events using
the Search portlet:

 1. A user enters a query and clicks the Search button.

 2. An ‘action’ URL is built and routed to the portlet container, which, in turn,
routes the command to the appropriate portlet (in this case, the Search
portlet).

 3. A ‘processAction’ is called on the Search portlet.

 4. The Search portlet retrieves the search parameters (they are part of the URL
that was built), and calls the ‘search’ method on the CIS layer.

 5. The CIS layer queries the content server, retrieves the data, and passes the
data object to the Search portlet.

 6. The portlet container calls render on each of the portlets on the page (including
the Search portlet), and each portlet uses the received data, or refreshes the
data, and displays HTML fragments to the user.

Note A: The action requests must end before the render requests begin.

Note B: The render requests are not triggered in a specific order and may be
executed sequentially or simultaneously.
11

Portlet Developer’s Guide Stellent Portlet Software Development Kit
CHAPTER 3

Stellent Portlet Software Development Kit

The Stellent Portlet Software Development Kit (SDK) provides everything you need
to build, customize, and distribute portlets.

In this section:

! SDK directory structure

! Portlet development tips

! Using the ReferencePortlets and PortletBuilder directories

! Using Ant to build portlet distributions

! Using the Stellent Portlet Tag Libraries

See “Using the Stellent Portlet SDK” on page 16 for more information on how to
create portlets.

Important: Stellent Content Integration Suite (CIS) version 7.6 must be installed. CIS
7.6 uses the Universal Content and Process Management API (UCPM API), which
replaces the LW API used in CIS 7.2. (The two APIs are not compatible.) For more
information, see “Migrating from version 7.2” in the UCPM API Developer’s Guide
(ucpm-dev-guide.pdf).

Note: See the CPS JavaDoc for information on the Class/Interface, Field, and
Method descriptions. The JavaDoc is located in the /docs/cps-javadoc.zip file.

SDK directory structure
The Stellent Portlet SDK can be found in the sdk/ directory of the unbundled CPS
distribution file. It consists of these sub-directories:

ReferencePortlets: Contains the source code for the Stellent portlets, including the
Java code, JSP pages, and Ant build.xml file that is used to create customized
portlets. Thus, those who wish to customize the portlets have access to the source
code for the portlet JSP pages and the Model-View-Controller framework.

PortletBuilder: Provides the structure for creating new portlets that use the Model-
View-Controller framework and the CIS layer. It includes an Ant build.xml file that
can be used to create custom portlets for a target platform (WebSphere, WebLogic,
Plumtree, or Sun ONE).

lib: Contains the SDK tag libraries bundled in JAR files.

sample:Contains a sample development portlet that shows how to use the
PortletBuilder directory to create a custom Stellent portlet.

Note: Apache Ant is a Java-based build tool that must be installed in order to build
customize portlets. This tool is available at: http://ant.apache.org
12

Portlet Developer’s Guide Stellent Portlet Software Development Kit
Portlet development tips
Whenever possible, CPS follows web standards such as JSR 168 and the Model-
View-Controller design pattern. Thus, your portlet implementations should also
follow these standards.

By following these best practices your portlets will be portable and maintainable.
Portlet developers should use these coding guidelines when designing and
developing portlets.

This is not intended as a primer for portlet development, as it does not address the
fundamentals of portlet programming. Instead, use this as a checklist during design
and code reviews to help promote consistent and quality portlet implementations.

Use these practical recomendations when developing portlets:

! Use taglibs whenever possible

Encapsulating Java code within JSP Tag Libraries allows you to more easily
reuse common functions and makes the JSP pages easier to update.

! Do not give portlets and servlets the same name

Some portal servers use the portlet name to identify the portlet within a web
application and may cause errors if encounters a servlet with the same name.

! Do not use head or body tags

The portlet JSP page contributes to the content of a larger page. Because the
HTML fragment is being added to a table cell <td></td> in the portal, it should
not include <html>, <head>, or <body> tags.

! Avoid client-side JavaScript

Using JavaScript executed on the browser makes your portlets browser-
dependant and requires additional cross-browser testing.

! Follow the Model-View-Controller design pattern

CPS uses a Model-View-Controller design pattern based on the open source
Struts and Tiles framework. Thus, the presentation of data should be separated
from the logic that obtains and organizes the data.

! Use the JavaServer Pages Standard Tag Library (JSTL)

The JavaServer Pages Standard Tag Library (JSTL) defines many commonly
needed tags for conditions, iterations, formatting, etc. When you see the c:
prefix in the code of JSP pages, these tag libraries are being used. You can find
more information about these tag libraries at: http://jakarta.apache.org/taglibs/

Using the ReferencePortlets and PortletBuilder
directories

The Stellent Portlet SDK includes the ReferencePortlets and PortletBuilder
directories. The ReferencePortlets directory contains source code and the
PortletBuilder directory contains the portlet build files. These directories share a
similar build environment and Ant scripts.

This directory structure is used by the supplied Ant file to build a portlet
distribution. The PortletBuilder Ant script builds a single portlet as an example of
how to package the needed portlet files for a few portal vendors (WebSphere,
13

Portlet Developer’s Guide Stellent Portlet Software Development Kit
WebLogic, Plumtree, and Sun ONE). Users wishing to build many portlets should
adapt the scripts accordingly.

Using Ant to build portlet distributions
Both the PortletBuilder and ReferencePortlets root directories contain an Ant file
that performs the compilation and packaging of the portlet. This root directory will
be referred to as $workingdirectory. The distribution process is invoked by the
following commands:

cd $workingdirectory
ant dist

For this distribution to work correctly, the following two environment variables
should be set in the build.properties file in the $workingdirectory directory.

The newly built portlet can be found in the $workingdirectory/dist/$portal.vendor
directory.

Note: Apache Ant must be installed for this process to work properly. This tool is
available at: http://ant.apache.org

Using the Stellent Portlet Tag Libraries
The Stellent Portlet Tag Libraries includes several tags that may be useful when
building customized portlets. The Stellent Portlet Tag Libraries are located in the lib/
directory and are bundled in JAR files.

URI creation

<SCS:CreateURI mode=("edit" | "help" | "view")>

Creates a URL through the PortletAPIFacade. The mode parameter is optional
and, if used, the created URL will cause the portlet mode to be switched to the
user-specified value. This tag is often used in conjunction with the following two
nested tags:

Directory Structure Description

lib/compile/$portalvendor Contains the libraries needed for building the portlets.

lib/deploy/$portalvendor Contains the libraries needed for deploying the portlets.

resources/$portalvendor Contains global and portal vendor-pecific files needed for portlet packaging.

src The source files for the new portlet.

build/$appserver The directory generated during the build to hold the classes and other build-
related files.

dist/$appserver The directory generated after the build is run to hold the built portlet.

Property Name Description

portal.vendor The name of the portal vendor that is the target for the current distribution.

portlet.name The name the user wishes to use for the current build. This name will be
used in the generation of the descriptor files for the portlet.
14

Portlet Developer’s Guide Stellent Portlet Software Development Kit
<SCS:URIAction name="$actionName">

Modifies the created URL by specifying an action to perform. This action name
is defined in the PortletDispatch.xml file (see Portlet Dispatch Framework).

<SCS:URIParameter name="$paramName" value="$paramValue">

Add the name/value pair to the generated URL.

Code sample:
 <a href=”
 <scsportlet:createURI>
 <scsportlet:URIAction value="checkOut"/>
 <scsportlet:URIParameter name="documentID" value='<%=id%>' />
 </scsportlet:createURI>”>
 Check Out File

Error handling

<SCS:Error id="$errorObject">

Determines if an error is present. If an error is found, the body of the tag is
evaluated and the error object variable is set.

Code sample:
 <scsportlet:error id="error">
 <div class="portlet-msg-error">
 <%=error.getMessage ()%></div>
 </scsportlet:error>

Portlet preferences

<SCS:GetPreference preference="$prefName" result="$esultVar">

Retrieves the specified portlet preferences and stores the result in the specified
variable name.

Code sample:
 <scsportlet:getPreference preference="maxResults"
 result="maxResultsVar" />
15

Stellent Content Portlet Suite - Portlet Developer’s Guide Using the Stellent Portlet SDK
CHAPTER 4

Using the Stellent Portlet SDK

Stellent Content Portlet Suite (CPS) includes the Stellent Portlet Software
Development Kit (SDK), which is used to develop new portlets. See “Stellent Portlet
Software Development Kit” on page 12 for an overview of the Stellent Portlet SDK,
an explanation of the various subdirectories, and a description of how Ant and the
tag libraries are used to build portlet distributions.

In this section:

! Portlet framework

! Portlet construction

! Creating a dispatch configuration file

! Getting a reference to the portlet API facade

! Creating an action handler

! Creating a Tile

! Creating a controller

Important: Stellent Content Integration Suite (CIS) version 7.6 must be installed. CIS
7.6 uses the Universal Content and Process Management API (UCPM API), which
replaces the LW API used in CIS 7.2. (The two APIs are not compatible.) For more
information, see “Migrating from version 7.2” in the UCPM API Developer’s Guide
(ucpm-dev-guide.pdf).

Note: See the CPS JavaDoc for information on the Class/Interface, Field, and
Method descriptions. The JavaDoc is located in the /docs/cps-javadoc.zip file.

Portlet framework
The Stellent Portlet SDK is composed of two pieces:

! Model-View-Controller framework

! API facade to the portlet container

Model-View-Controller framework

CPS uses a Model-View-Controller design pattern based on the open source Struts
and Tiles framework. The View is usually handled by JSP pages. The Model is
generally a UCPM SCSObject that represents data retrieved from the content server
or image server. The Controller are the Java classes in the
com.stellent.portlet.framework package that controls the execution of actions.
16

Stellent Content Portlet Suite - Portlet Developer’s Guide Using the Stellent Portlet SDK
See the UCPM API Developer’s Guide for more information (ucpm-dev-guide.pdf).

API facade to the portlet container

CPS uses an API facade to the portlet container which allows portlets developed
with the Stellent Portlet SDK to be run identically on a variety of platforms. The
Stellent Portlet SDK supports the JSR 168–compliant containers WebSphere,
WebLogic, Plumtree, and Sun ONE out of the box.

Note: While many portlet containers support the JSR 168 standard, some
implementations are not completely compliant or else they differ in their handling
characteristics.

Portlet construction
Any portlet you build with the Stellent Portlet SDK contains a dispatch configuration
file, a set of JavaServer Pages, and a set of action handlers.

When the user clicks a link in a specific portlet, the associated action handler is
executed and the result of the action is placed on the request. The Tile configured to
be the destination after the action is executed is then found, and its associated JSP
pages are inserted. The JSP page then models the data that was the result of the
action.

Creating a dispatch configuration file
A dispatch configuration file defines each action handler, each Tile, and information
about the portlet itself. By default, the naming convention is “stellent
<portletname> dispatch.xml”.

Example: stellentactivesearchdispatch.xml

The entry point to Stellent portlets is the SCSPortlet class (there may be different
implementations of this per container). This class extends the GenericPortlet class.
At initialization, it looks for its configuration file in the "WEB-INF/config/" directory.

Keywords
These special keywords can be used as view targets:

! default: Renders the default page for the portlet as defined by the default-
action node; if the user is in edit mode, the default edit mode page is
displayed.

! previous: Renders the previous page in the stack.
17

Stellent Content Portlet Suite - Portlet Developer’s Guide Using the Stellent Portlet SDK
! login: Rpecifying an action node with this name will cause the framework to
execute the action handler upon detection of a new login

! error: CPS displays a default error page that assumes a throwable has been
placed on the request, you may override this error page by creating a new
action definition with the keyword name ‘error’.

Active search dispatch configuration
Here is an example of the active search dispatch configuration coding:

<portletdispatch-config>

 <!--
 Default action parameters, name for the default action, cacheResult is a
 boolean that specifies whether the default behavior is to cache the action
 result on the session. If the value is set to false the action will be
 performed each time the portlet is rendered, the result data is discarded
 each time.

 The cacheResult value here can be overriden by the action definition itself,
 it the action does not specify, the default value is used.
 -->

 <default-action view="showHome" edit="showEdit" cacheResult="true"/>

 <!--
 Portlet-id is used to ensure that unique HTML form, javascript names are
 used, this value will be available on the request object as
 ISCSAction.PORTLET_ID
 -->

 <portlet-id value="active_search_portlet"/>

 <!--
 Definitions for all the action types available to this portlet
 -->

 <action-mappings>
 <forward name="showHome" authRequired="true" path="active.search.main.page"/>
 <forward name="showEdit" authRequired="true" path="active.search.edit.page"/>
 <location path="/WEB-INF/actions/active_search_actions.xml" />
 <location path="/WEB-INF/actions/active_document_actions.xml" />
 </action-mappings>

 <!--
 Definitions for UI components available to this portlet
 -->

 <tiles-definitions>
 <definition name=".mainLayout" path="/stellent/ui/layouts/mainlayout.jsp">
 <put name="header" value="/stellent/ui/fragment/header.jsp"/>
 <put name="footer" value="/stellent/ui/fragment/footer.jsp"/>
 <put name="content" value="/stellent/ui/layouts/defaultContent.jsp"/>
 </definition>
 <location path="/WEB-INF/tiles/active_search_tiles.xml" />
 <location path="/WEB-INF/tiles/active_document_tiles.xml" />
 </tiles-definitions>

</portletdispatch-config>
18

Stellent Content Portlet Suite - Portlet Developer’s Guide Using the Stellent Portlet SDK
Types of child nodes
The top-level node, <portletdispatch-config>, can have these types of child nodes:

! Default Action node

! Portlet ID node

! Location node

! Action Mappings node

! Tiles-Definitions node

Default Action node
The <default-action> node is used to specify the action to execute or Tile to display
when the portlet or the edit mode is first visited. It will also be the action executed
when the keyword 'default' is the target of another action.

view/edit attribute: Specifies the view/edit default; the values are the name of a
defined action and the default edit action. For example, the defined action of
‘showHome’ and the default edit action of ‘showEdit’.

cacheResult attribute: Indicates whether or not the result of the action should be
cached on the session or re-executed each time the render () method is called.
When users perform actions on other portlets it generates a render call which asks
the portlet to redraw itself. If the cachResult is set to ‘true’ this redraw will not re-
execute the action but instead uses the cached result. In the case of the Active
Search portlet it is set to true by default. individual actions can override the default
for the portlet, this value is only used when not specified by the action definition.

Portlet ID node
The <portlet-id> node is used to specify a unique name for the portlet. The string
value specified here is made available on the request with the parameter name
ISCSAction.PORTLET_ID. This ID is mainly used to uniquely identify HTML elements
such as forms and JavaScript functions so they do not collide with other portlets on
the same page.

Location node
The <location> node is used to specify another dispatch configuration file in which
to load definitions from. It simply takes a path attribute and it indicates where to
look for the configuration file to be loaded.

This node can be a child of the Action Mappings node or the Tile Definitions node. If
there is a name conflict the Action Mappings in the current configuration XML take
precedence over the loaded action definitions.

Action Mappings node
The <action-mappings> node is the container for action definitions, which are
usually defined by an Action node; two exceptions are the Forward node and the
Location node.
19

Stellent Content Portlet Suite - Portlet Developer’s Guide Using the Stellent Portlet SDK
Action node
The <action> node specifies several attributes, which are used to perform the
desired action. Here is an example of an action definition:

<!--
 Shows the form to add new saved search.
 -->

<action
 name="active.search.showAddSavedSearch"
 class="com.stellent.portlet.components.search.active.handlers.
 ShowAddSavedSearchHandler"
 bean="com.stellent.portlet.components.search.active.forms.
 AddSavedSearchForm"
 authRequired="true"
 addToStack="false">
 <forward name="success" path="active.search.savedsearch.add.page"/>
</action>

The attributes are:

! name: The name of the action. This is used when executing this action within a
JSP page.

! class: The fully qualified class name of the class that implements the
ISCSActionHandler interface. This class is where you will add your action
handler code. Both the name and class attributes are required to define an
action.

! bean: The fully qualified class name of a class that implements the
ISCSActionForm interface. This is passed into your action handler when the
handleAction method is called. This bean can be populated through an HTML
form post or by explicit definition through a special CPS portlet tag. This is an
optional attribute, if the action does not need any input parameters this
attribute can be omitted, the ISCSActionForm passed into the handleAction will
be null.

! authRequired: Controls whether the framework will actually execute the
action if an unauthenticated portal user tries to execute the action. It defaults
to false and is an optional parameter. If it is set to true and an unauthenticated
user attempts to execute the method a special system JSP page will displayed
asking the user to first login before attempting to use the portlet.

! addToStack: Defines whether the portlet framework will execute this action
again or cache the result when render is called for a redraw. It defaults to true
so that portlets will show the last state when redrawing, however, some actions
should not be performed more than once, so you may tell the framework not to
save the result or remember it as the last action.

The <action> node is also a container for any number of forward actions, which
specify which Tile or JSP page the portlet should display upon completion of the
action. You may specify as many different ‘forwards’ as you want in this list, as long
as they have unique names. The action handler code itself specifies which ‘forward’
to use upon completion of the action. If the handler does not explicitly state the
view name to forward to upon completion of the action, it defaults to the success
forward.

In addition to these framework properties, you may specify an arbitrary number of
custom attributes for an action definition. These attributes will be available to the
action handler via the ISCSActionHandler getAttributes() method. For example, the
20

Stellent Content Portlet Suite - Portlet Developer’s Guide Using the Stellent Portlet SDK
Contribution portlet adds a custom property called 'async' that indicates whether
contributions should leverage the Java Messaging Service (JMS) to do document
contributions asynchronously.

Forward node
The <forward> node is a special type of action that does not actually execute any
code but automatically forwards the display to the specified Tile definition or explicit
JSP page location. The path attribute accepts either of these values.

Tiles-Definitions node
The Tiles and Struts design pattern tells the framework how to render a particular
view by specifying a main JSP page, various regions of content, and an optional
controller class that are all used to create the final view.

Example:

<definition name=".mainLayout" path="/stellent/ui/layouts/mainlayout.jsp">
 <put name="header" value="/stellent/ui/fragment/header.jsp"/>
 <put name="footer" value="/stellent/ui/fragment/footer.jsp"/>
 <put name="content" value="/stellent/ui/layouts/defaultContent.jsp"/>
</definition>

This defines a Tile of the name ".mainLayout" and specifies the JSP page "/stellent/ui/
layouts/mainlayout.jsp" to be the main JSP page to use when rendering this view.
Notice the Put nodes, which specify the regions of content available to the main JSP
page. In this example, three regions are available: a header, footer, and content
region. Each of these Put nodes specify a name for the region and the
corresponding JSP page to use to render the region.

You can also specify a controller for Tile definitions and specify inheritance, as in the
following definition:

<definition name="active.search.edit.page" extends=".mainLayout"
 controllerClass="com.stellent.portlet.components.search.active.
 controllers.EditController">

 <put name="content" value="/stellent/ui/layouts/search/active/
 active_search_edit.jsp" />

</definition>

This Tile extends the ".mainLayout" Tile that we defined earlier and inherits its
configuration. We add a controllerClass to this Tile which is an object that
implements the ISCSController interface and provides a hook to execute Java code
before the Tile is rendered in case processing is needed. Notice that this Tile
definition overrides the "content" region and changes the JSP page that is used to
render this region.
21

Stellent Content Portlet Suite - Portlet Developer’s Guide Using the Stellent Portlet SDK
Getting a reference to the portlet API facade
You may at any point in the code execute the following line to get the stateless API
facade object:

IPortletAPIFacade facade = PortletAPI.getInstance ().getPortletAPIFacade ();

This will return a facade object that is relevant to your current container. If the
facade is unable to determine which vendor the container was implemented for, it
creates a generic JSR 168–compliant facade object. To write a new detector, see
the com.stellent.portlet.api.PortalVendor class and add your new detector based on
the other implementations.

Creating an action handler
An action definition is invoked through a JSP page, like the following:

<form name="subAuthSearch" method="POST" onSubmit="prepareAuthScsSearch()"
 action='<scsportlet:createURI><scsportlet:URIAction
 value="active.search.doSearch" />
 </scsportlet:createURI>'>

In this example, the CPS tag “createURI” invokes the “active.search.doSearch”
action when the form is submitted. The name “active.search.doSearch” maps to an
action definition created in the configuration file. (See “Action node” on page 20 for
additional information.)

The action definition specifies a class name. The class name should be an object
that implements the ISCSActionHandler interface, which has a variety of methods to
implement that the framework uses to exercise the object. However, by extending
the abstract base class SCSActionHandler, the developer need only implement one
method:

 /**
 * Handle an action from the portlet
 *
 * @param portletRequest
 * @throws com.stellent.portlet.dispatcher.PortletDispatcherException
 */
 public ISCSActionResult handleAction (ISCSActionForm form, Object
portletRequest)
 throws PortletDispatcherException, CommandException, RemoteException;

This method will be called each time the action is invoked through the portlet
framework. The method is passed in an ISCSActionForm, which is a bean that
represents the parameters that are made available to this action.

Note: This class will be of the type specified in the Action node.

The already initialized CISApplication object will be available to the action handler
through the getCISApplication() method when inside the handleAction method, as
will any other attributes specified on the Action node via the getAttributes() method.
You may also access a unique ID for this handler via the getID() method. This can be
used to store information on the session without fear of collision.
22

Stellent Content Portlet Suite - Portlet Developer’s Guide Using the Stellent Portlet SDK
The return type is that of an action result object. Usually, this is simply a container
for the result parameters that are to be stored on the request for access within the
JSP page. However, you may specify other parameters to this result, such as the
view that should be used upon return. (It defaults to “success” if you use the base
class SCSActionResult.)

Sample action handler

The action definition specifies the action name “active.document.checkOut”; the
ISCSActionHandler class that performs the action; the ISCSActionForm, which is a
bean that represents the parameters passed into the handler; and the resulting Tile
that is to be displayed upon completion of the action.

<!--
 Attempts to check out the specified document.
-->

<action
 name="active.document.checkOut"
 class="com.stellent.portlet.components.document.active.handlers.CheckOutHandler"
 bean="com.stellent.portlet.components.document.active.forms.CheckOutForm"
 authRequired="true" >

 <forward name="success" path="active.document.checkout.page" />
</action>

The SCSActionForm code represents the parameters the checkout handler needs to
complete its action. In the following example, checkout needs only the document ID
of the document that we are planning to check out:

public class CheckOutForm extends SCSActionForm {
 private String m_documentID;

 public String getDocumentID () {
 return m_documentID;
 }

 public void setDocumentID (String documentID) {
 m_documentID = documentID;
 }
}

The SCSActionHandler code first checks to see if the passed-in form is really an
instance of CheckOutForm. It errors out if this is not the case; otherwise, it checks
out the file through the UCPM API. This puts the resulting SCSObject on the request
by calling result.setVariable(name, object). These objects will now be available to
the JSP page rendering the view.

Note: See the UCPM API Developer’s Guide for more information (ucpm-dev-
guide.pdf).

public class CheckOutHandler extends SCSActionHandler {
 /**
 * Checks out the specified content.
 *
 * @param portletRequest
 * @throws com.stellent.portlet.dispatcher.PortletDispatcherException
 */
 public ISCSActionResult handleAction (ISCSActionForm form,
23

Stellent Content Portlet Suite - Portlet Developer’s Guide Using the Stellent Portlet SDK
 Object portletRequest)
 throws PortletDispatcherException, CommandException, RemoteException {
 ISCSActionResult result = new SCSActionResult ();

 if (form instanceof CheckOutForm) {
 CheckOutForm cof = (CheckOutForm)form;
 ISCSContext ctx = SCSSession.getSCSContext (portletRequest);

 //Get checkout response.
 ISCSActiveDocumentCheckoutAPI checkoutAPI =
 getCISApplication ().getUCPMAPI ().getActiveAPI
 ().getDocumentCheckoutAPI ();
 ISCSActiveDocumentID docID =
 getCISApplication ().getUCPMAPI ().getActiveAPI
 ()._createActiveDocumentID (cof.getDocumentID (),
 ctx.getAdapterName ());
 ISCSDocumentActionResponse resp =
 checkoutAPI.checkoutFileByID (ctx, docID);

 //Get document info.
 ISCSActiveDocumentInformationAPI docInfoAPI =
 getCISApplication ().getUCPMAPI ().getActiveAPI
 ().getDocumentInformationAPI ();
 ISCSDocumentInformationResponse docInfoResp =
 docInfoAPI.getDocumentInformationByID
 (SCSSession.getSCSContext (portletRequest), docID);

 result.setVariable ("checkoutResponse", resp);
 result.setVariable ("infoResponse", docInfoResp.getDocNode ());
 } else {
 throw new PortletDispatcherException ("Unexpected form type,
 expected 'CheckOutForm', got " + form);
 }

 return result;
 }

Creating a Tile
A Tile consists of a definition, an optional controller class, and a collection of JSP
classes that will make up a portlet view. The definition section contains XML code
that identifies the main layout JSP page.

The following example specifies three different regions that reference three JSP
pages:

<%@ include file="/stellent/ui/fragment/jspimport.inc" %>
<scsportlet:insert name="header" />
<scsportlet:insert name="content" />
<scsportlet:insert name="footer" />

The ‘include’ at the top includes commonly defined imports and taglib definitions.
For example, this is an example of the file for the portlets included with Stellent
Content Portlet Suite:

<%@ page import="com.stellent.portlet.api.IPortletAPIFacade" %>
<%@ page import="com.stellent.portlet.api.PortletAPI" %>
<%@ include file="/stellent/ui/fragment/page.inc" %>
24

Stellent Content Portlet Suite - Portlet Developer’s Guide Using the Stellent Portlet SDK
<%@ taglib uri="/WEB-INF/tlds/i18n.tld" prefix="i18n" %>
<%@ taglib uri="/WEB-INF/tlds/scsportlet.tld" prefix="scsportlet" %>
<%@ taglib uri="/WEB-INF/tlds/c.tld" prefix="c" %>
<%@ taglib uri="/WEB-INF/tlds/scs-databinder.tld" prefix="db" %>

<%
 //the api facade class
 IPortletAPIFacade apiFacade = PortletAPI.getInstance ().getPortletAPIFacade ();
%>

In the JSP page, three simple lines use the insert tag included with CPS to tell the
view to put the header first, the content next, and the footer last. For each region,
the insert tag tells the framework to look up the definition and include the JSP page
it finds defined in the location specified by the insert tag.

Creating a controller
A controller is a hook that allows the Tile author to execute Java code before the
Tile itself is rendered. To create a controller, you need to implement only the
ISCSController class, which requires a variety of methods that the portlet framework
uses to control its lifetime.

Fortunately, there is an abstract base class included (the SCSController class), which
in most cases performs all the operations you need, save one:

 /**
 * Method is called before a Tile is rendered.
 *
 * @param portletRequest The portlet request that generated the Tile render.
 * @param portletResponse The portlet response associated with Tile render.
 * @throws ServletException If a portlet container error occurs.
 * @throws IOException If a portlet container error occurs.
 * @throws CommandException If a CIS framework error occurs.
 * @throws RemoteException If a CIS communication error occurs.
 */
 public void perform (Object portletRequest,
 Object portletResponse)
 throws ServletException, IOException, CommandException, RemoteException;

This method will get called right before the Tile is rendered and any objects you
place on the request will be available to the resulting JSP page.
25

Stellent Content Portlet Suite - Portlet Developer’s Guide Index

Index
A
action handler

creating 22
sample 23

Action Mappings node 19
Action node 20
Forward node 21

Action node 20
addToStack attribute 20
authRequired attribute 20
bean attribute 20
class attribute 20
name attribute 20

Ant
build.xml file 12
for portlet distribution 14

Apache Ant. See also Ant. 12
Authenticated Library portlet 9
Authenticated Search portlet 9

B
build.properties file 14

portal.name variable 14
portal.vendor variable 14

building portlet distributions 14

C
CheckOutForm 23
Contribution portlet 9
controller, creating 25
CreateURI tag 14

D
data object 11
Default Action node 19

cacheResult attribute 19
view/edit attribute 19

dispatch configuration file 17
Action Mappings node 19
child nodes 19
coding for active search 18
Default Action node 19
default keyword 17

error keyword 18
Location node 19
login keyword 18
naming convention 17
Portlet ID node 19
previous keyword 17
Tiles-Definition node 19
top-level node 19

E
error handling tag 15
Error id tag 15

F
Federated Search portlet 10
Forward node 21

G
GetPreference tag 15

I
Image Server Search portlet 10
ISCSActionForm 22
ISCSActionHandler class 23
ISCSActionHandler interface 22

J
JavaDoc 9
JSR 168

compliant containers 17
façade object 22
Portlet Specification 9

L
Library portlet 9
Location node 19

M
Metadata Admin portlet 9
Model-View-Controller 12
Model-View-Controller framework 10
26

Stellent Content Portlet Suite - Portlet Developer’s Guide Index
P
Plumtree 17
portal.vendor variable 14
Portlet API Façade 10, 17
Portlet ID node 19
portlet preferences 15
Portlet Specification (JSR 168) 9
portlet.name variable 14
PortletBuilder directory 13
portlets

Ant build.xml file 12
Authenticated Library 9
Authenticated Search 9
construction 17
Contribution 9
dispatch configuration file 17
Federated Search 9
framework 16
Image Server Search 9
Library 9
Metadata Admin 9
Portlet API Façade 10, 17
Saved Search 9
Search 9
source code 12
tag libraries 12, 14
using Ant for distributions 14
using Ant to compile and package 14
Workflow Queue 9

processAction 11

R
ReferencePortlets directory 13

S
Saved Search portlet 9
SCSActionForm 23
SCSActionForm code 23
SCSActionHandler class 22
SCSActionHandler code 23
SCSActionResult class 23
Search portlet 9
Stellent Portlet SDK

creating a controller 25
creating a dispatch configuration file 17
creating a Tile 24
creating an action handler 22
portlet framework 16
tag libraries 12, 14

Stellent portlets. See portlets.
Sun ONE 17

T
tag libraries 12, 14
tags

CreateURI 14
createURI 22
error handling 15
Error id 15
GetPreference 15
portlet preferences 15
URI creation 14
URIAction 15
URIParameter 15

Tile, creating 24
Tiles-Definitions node 19, 21

U
Universal Content and Process Management API 10
URI creation tag 14
URIAction tag 15
URIParameter tag 15

W
WebLogic 17
WebSphere 17
Workflow Queue portlet 9
27

	Cover page
	Contents
	Introduction
	Overview
	CIS Administration Application Help system

	Stellent Portlets
	Stellent portlets
	Integration architecture
	Portlet request handling sequence

	Stellent Portlet Software Development Kit
	SDK directory structure
	Portlet development tips
	Using the ReferencePortlets and PortletBuilder directories
	Using Ant to build portlet distributions
	Using the Stellent Portlet Tag Libraries

	Using the Stellent Portlet SDK
	Portlet framework
	Portlet construction
	Creating a dispatch configuration file
	Keywords
	Active search dispatch configuration
	Default Action node
	Portlet ID node
	Location node
	Action Mappings node
	Tiles-Definitions node

	Getting a reference to the portlet API facade
	Creating an action handler
	Creating a Tile
	Creating a controller

	Index

