
StellentTM

Programmer’s Reference Guide

SDK-001-500

© 1996-2001 Stellent, Inc. All rights reserved. No part of this document may be repro-
duced or transmitted in any form or by any means, electronic or mechanical, including
photocopying, recording, or by any information storage and retrieval system without writ-
ten permission from the owner, Stellent, Inc., 7777 Golden Triangle Drive, Eden Prairie,
Minnesota 55344 USA. The copyrighted software that accompanies this manual is
licensed to the Licensee for use only in strict accordance with the Software License Agree-
ment, which the Licensee should read carefully before commencing use of this software.

Stellent, the Stellent logo, Stellent Content Server, Stellent Content Management, Stellent
Content Publisher, Stellent Dynamic Converter, and Stellent Inbound Refinery are trade-
marks of Stellent, Inc. in the USA and other countries.

Adobe, Acrobat, the Acrobat Logo, Acrobat Capture, Distiller, Frame, the Frame logo,
and FrameMaker are registered trademarks of Adobe Systems Incorporated.
ActiveIQ is a trademark of ActiveIQ Technologies, Incorporated. Portions Powered by
Active IQ Engine.
HP-UX is a registered trademark of Hewlett-Packard Company
Kofax is a registered trademark, and Ascent and Ascent Capture are trademarks of Kofax
Image Products.
Linux is a registered trademark of Linus Torvalds.
Microsoft is a registered trademark, and Windows, Word, and Access are trademarks of
Microsoft Corporation.
MrSID is property of LizardTech, Inc. It is protected by U.S. Patent No. 5,710,835. For-
eign Patents Pending.
Portions Copyright © 1991-1997 LEAD Technologies, Inc. All rights reserved.
Portions Copyright © 1990-1998 Handmade Software, Inc. All rights reserved.
Portions Copyright © 1988, 1997 Aladdin Enterprises. All rights reserved.
Portions Copyright © 1997 Soft Horizons. All rights reserved.
Portions Copyright © 1999 ComputerStream Limited. All rights reserved.
Portions Copyright © 1995-1999 LizardTech, Inc. All rights reserved.
Red Hat is a registered trademark of Red Hat, Inc.
Sun is a registered trademark, and Solaris is a trademark of Sun Microsystems, Inc.
UNIX is a registered trademark of The Open Group.
Verity is a registered trademark of Verity, Incorporated.

All other trade names are the property of their respective owners.

Programmer’s Reference Guide iii

T a b l e o f C o n t e n t s

C
Chapter 1: The Development Kit

Overview . 1-1
SDK Documentation . 1-1

Creating Custom Conversion Engines 1-1
IdcCommand Reference Guide . 1-2
Custom Scripting Reference Guide. 1-2
Programmer’s Reference Guide. 1-2

Component Wizard . 1-3

Chapter 2: Understanding Component Architecture

Overview . 2-1
Examine or Modify Source Code . 2-2

Create Customizations. 2-2
Reinstall or Upgrade . 2-2

Required Skills and Tools . 2-3
Required Skills . 2-3
Required Tools . 2-4

Customizing the Interface . 2-5
Customizing Product Functionality . 2-6
Component Architecture and the Content Server 2-7

Server Behavior . 2-7
Server Actions . 2-8

Page Retrieval . 2-8
Content Server Services . 2-8
Search Services . 2-9

Customizing Options . 2-10
Customizing Graphics . 2-10

iv Programmer’s Reference Guide

Contents

Image Format. 2-10
Image Referencing. 2-11

Files Used for Customization. 2-12
Bin Directory . 2-12
Config Directory . 2-13
Shared/Config Directory . 2-13
Weblayout Directory .2-13

Development Recommendations . 2-14
Development Instance . 2-14
Component File Structure . 2-14

Consistent File Structure . 2-14
Naming Conventions .2-15

Use Unique File Names . 2-16
Use Appropriate File Name Extensions 2-16
Use Consistent Naming Conventions 2-16
Observe Case. 2-16

Change Form Methods . 2-16
Read Server Errors. 2-17

Chapter 3: Understanding Component Assembly

Overview . 3-1
Page Assembly . 3-1
Server Start Up Actions . 3-3

Internal Initialization Occurs . 3-3
Standard Resources, Templates, and Reports Load.3-4
Custom Components Load .3-4

Merge Rules . 3-5
Component Architecture Process . 3-5

Components File . 3-5
Component Definition File .3-6
Modifying Resources. .3-6
Modifying Standard Templates . 3-7
Defining Custom Environment Resources 3-10
Defining Custom Queries . 3-10
Defining Custom Services . 3-13

Chapter 4: Understanding Resource Types

Overview . 4-1
HTML Include . 4-2
Dynamic Table . 4-4
Query . 4-5
Service . 4-6

Programmer’s Reference Guide v

Contents

Template. 4-7
Environment . 4-8

Chapter 5: Understanding HDA and HTM File Types

Overview . 5-1
HDA File Type. 5-2

HDA File Structure . 5-2
Section Types . 5-2

Purpose . 5-2
HDA Section Type: @Properties 5-3
HDA Section Type: @ResultSet. 5-4
Data Binder . 5-8

HTM File Type. 5-9
Templates and Reports . 5-9
Resources .5-9
HTM Tables. 5-9

Structure . 5-10
Dynamic Content Resources . 5-11

Structure . 5-11
Including Dynamic Content in a Template 5-15

Chapter 6: Understanding the Component Definition File

Overview . 6-1
ResourceDefinition. 6-2

ResourceDefinition Columns. 6-3
type . 6-3
filename. 6-3
tables .6-4
loadOrder. 6-4
Example ResourceDefinition . 6-4

MergeRules . 6-6
MergeRules Columns . 6-6

fromTable . 6-7
toTable. 6-7
column. 6-7
Example MergeRules . 6-7

Chapter 7: Understanding the Components HDA File

Overview . 7-1
Component Structure . 7-1

Component Columns .7-2
name . 7-2

vi Programmer’s Reference Guide

Contents

location . 7-2
Implementing a Component . 7-2
Removing A Component . 7-3

Configuration File . 7-4
Defining a Variable . 7-5
Referencing a Variable . 7-6

Chapter 8: Understanding Templates

Overview . 8-1
Content Server Loading. 8-1

Templates File . 8-2
IntradocTemplates . 8-2
IntradocTemplates Columns . 8-3

name . 8-4
class . 8-4
formtype . 8-5
filename. .8-5
description . 8-5

VerityTemplates . 8-6
SearchResultTemplates . 8-6

SearchResultTemplates Columns . 8-7
name . 8-7
formtype . 8-7
filename. .8-8
outfilename .8-8
flexdata . 8-8
description . 8-9

Defining Custom Templates. 8-10

Chapter 9: Understanding Content-Centered Template Metadata

Overview . 9-1
Multi-Checkin Environment File . 9-2

Multi-Checkin Menu Display . 9-2
Multi-Checkin Content Types . 9-2

Chapter 10: Understanding Query and Service Resources

Overview . 10-1
Query Resource . 10-1

Query Definition Tables . 10-2
Query Definition Table Columns . 10-2

name . 10-2
queryStr . 10-3

Programmer’s Reference Guide vii

Contents

parameters . 10-3
Database Tables . 10-3
Example Query .10-7

Service Resource . 10-8
Service Resource Structure .10-8
Service Name. 10-9
Service Attributes . 10-10

Service Class . 10-10
Access Level . 10-11
Template Page. 10-11
Sub-Service . 10-11
Subjects Notified .10-12
Error Message . 10-12

Service Actions .10-13
Type of Action . 10-13
Function Name . 10-14
Function Parameters . 10-14

Example Service . 10-16

Chapter 11: Understanding the MultiCheckin Component

Overview . 11-1
Component Description . 11-4

MultiCheckinManifest.zip . 11-4
manifest.hda. 11-5

Example Manifest . 11-6
components/doc_man.htm . 11-7
components/multi_checkin_resource.htm 11-9
components/multi_checkin.hda . 11-11
components/multi_checkin_environment.cfg 11-12
components/multi_checkin_templates.hda 11-14
readme.txt . 11-14

Chapter 12: Understanding Workflows and Workflow Branching

Overview . 12-1
Workflow Types . 12-2

Basic Workflows. .12-2
Criteria Workflows . 12-2
Sub-Workflows . 12-3

Workflow Steps . 12-3
Jumps . 12-4
Tokens . 12-5

Workflow and Script Templates . 12-6
Workflow Templates. 12-6

viii Programmer’s Reference Guide

Contents

Script Templates . 12-6
Workflow Branching . 12-7

Evaluating the Script . 12-7
Actions Performed on the Last Step 12-8
Actions Performed on Restart . 12-8
Actions Performed on Exit . 12-8
Actions Performed on Error . 12-8
Actions Performed on Reject . 12-8
Executing the Script . 12-9

Workflow Information Storage .12-10
Database Tables . 12-10
Associated Files . 12-10

Workflow Rules and Error Handling .12-11

Programmer’s Reference Guide 1-1

C h a p t e r

1
Chapter 1The Development Kit

Overview
The Development Kit for the Content Server consists of the SDK
documentation and The Component Wizard.

SDK Documentation
The development kit documentation provides programmer level development
information. This information is accessed as PDF files by selecting Start—
Programs—Stellent Content Server— Master_on_server—Utilities—SDK
Documentation.

Creating Custom Conversion Engines

This document provides information on creating custom conversion engines for
the Refinery and Visual Basic module API specifications. This guide provides
developers with the information they need to create and implement multiple
custom conversion engines for the Refinery.

1-2 Programmer’s Reference Guide

The Development Kit

IdcCommand Reference Guide

This document provides information on the Java Command Utility and ActiveX
Command Utility for the Content Server. The IdcCommand utility is a stand-
alone Java application that enables users to execute services. The program reads
a command file containing commands and parameters and calls the specified
services. IdcCommandX is an ActiveX control that enables a program to
execute a service and retrieve file path information.

Custom Scripting Reference Guide

This document provides information about Idoc Script application, functions,
predefined variables and configuration settings; Web server variables; and
HTML Forms scripting. The document contains syntax, code references,
examples, and descriptions

Programmer’s Reference Guide

This document provides a general description of how the system works and
background information required for performing customizations. This guide
supplies the pertinent information developers need to develop custom
components for the Content Server. Information includes code references,
technical tips, and examples.

Programmer’s Reference Guide 1-3

The Development Kit

Component Wizard
The Component Wizard is a development tool that automates the process of
creating custom components. A developer can create custom components and
modify existing components. Additionally, a developer can package any files
associated with the custom component.

Launch the Component Wizard by selecting Start—Programs—Stellent
Content Server—Master_on_server—Utilities—Component Wizard.

The Component Wizard can also be launched by navigating with Windows NT/
2000 Explorer to the <home>\bin\ComponentWizard.exe file.

Follow these steps to launch from a command prompt:

1. Type cd stellent\bin

2. Press Enter.

3. Type ComponentWizard

4. Press Enter.

Programmer’s Reference Guide 2-1

C h a p t e r

2
Chapter 2Understanding Component

Architecture

Overview
Components are program modules that are designed to interact with each other
at runtime. Components can vary in size, can be authored by various
programmers using different development environments and may or may not be
platform independent. Components can be run on a single instance or across
multiple instances such as a corporate intranet. Component architecture is
derived from object-oriented technologies. Component software, such as the
Content Server, implies the use of small modules that enables customization of
the application.

There are several advantages to using Component Architecture with the Content
Server.

• Examine or modify source code without compromising the integrity of the
product.

• Create Customizations with copies of original code modules.

• Reinstall or upgrade without compromising customizations.

2-2 Programmer’s Reference Guide

Understanding Component Architecture

Examine or Modify Source Code
The Content Server loads many of its resources from external text files. Thus, it
provides the ability to view the files to analyze how the system works.

Create Customizations

The Content Server was designed to provide the ability to make changes to
copies of these resources and override the look and feel of the system. The
primary file for implementing customizations is the <home>/config/
components.hda file.

When the server loads, the final step is to load any defined components. The
components.hda file provides the Content Server the required information on
which component to load.

Note: Items with identical names override one another, with the last item loaded
having its definition take precedence over all others.

Reinstall or Upgrade

Files such as std_page.htm can be copied and the definitions rewritten for some
or all of the resources defined within the product. This leaves the original files
intact. Once rewritten, the customized files simply need to be included with the
use of the components.hda file.

Programmer’s Reference Guide 2-3

Understanding Component Architecture

Required Skills and Tools
To take advantage of the extensibility of the Content Server, it is important to
understand the skills and tools needed for performing customizations using
Component Architecture.

Required Skills

The Content Server brings together a wide variety of technologies to deliver
advanced functionality. To modify the system, certain experience and skills
with some or all of these technologies is required. The technical skills required
will vary depending on the complexity of the customization. Many
customizations can be accomplished with a knowledge of HTML, Component
Architecture, and Idoc Script.

This list describes, in descending order of importance, the technologies you may
need experience and skill when modifying the content Server.

• HTML/CSS—To make changes to the templates a good understanding of
HTML and cascading style sheets (CSS) is required. The templates are not
complex in their use of HTML, but they make constant use of HTML tables
and frequent use of forms. The std_page.htm file includes cascading style
sheets to control the look-and-feel of the default templates, including fonts
and layout. Therefore, knowledge of these aspects of HTML is essential to
creating customizations.

• Component Architecture—To understand how your changes will be
implemented, a conceptual understanding of how the Content Server works is
required.

• Idoc Script—Almost every page that is statically or dynamically assembled
includes some Idoc Script. Idoc Script is a proprietary scripting language. It
provides the method for processing various page elements after the browser
has made a request, but before the requested page is returned.

For additional information, refer to the Custom Scripting Reference Guide.
This reference manual includes a categorically arranged, alphabetical listing
of pre-defined variables, Idoc Script commands, and functions. This
reference tool includes a description of each of the commands, as well as
proper syntax and examples.

2-4 Programmer’s Reference Guide

Understanding Component Architecture

• JavaScript—Most Content Server pages do not use JavaScript. Notable
exceptions are the Search and Check in pages. For changes to these pages
you should have an understanding of JavaScript. In addition, it is important
to understand how JavaScript works with HTML forms.

• SQL—Structured Query Language is used in the system to manage
information related to the content items. The queries you build with SQL can
relate relevant information about each content item on a web page.

• Java Programming—The server is implemented with Java classes. A
thorough understanding of Java and the Content Server Java class files is
required before any changes can be made to that part of the system. However,
the product can be customized extensively without having to work with Java.

Required Tools

These are some of the tools that you may find useful in performing
modifications:

• Text Editor—Most product customizing can be done with a normal text
editor such as Microsoft WordPad.

• HTML Editor (non-graphical mode)—Use caution when using an HTML
editor. Often, such programs change the source HTML. If you use a graphical
editor such as the one provided with Microsoft Visual InterDev, make sure
you edit in a non-graphical mode.

Important: Using an HTML editor in its graphical mode may cause Idoc Script tags
to be converted into a string of characters that will no longer be recognized by the
Content Server.

• JavaScript Debugger—A JavaScript debugger will ease the task of
JavaScript development. Java development will require that you have an
appropriate Java development environment.

• Multiple Browsers—We recommend that changes be tested in all versions
of browsers that your clients will use. Internet Explorer and Netscape
Navigator do not display content in the same manner. In addition, different
versions of the same browser may exhibit different behavior.

• Software Development Kit (SDK)—The Software Development Kit is a
collection of documentation and the Component Wizard. The documentation
provides the conceptual knowledge for customization and reference
information. The Component Wizard is designed to assist you in developing
your custom components.

Programmer’s Reference Guide 2-5

Understanding Component Architecture

Customizing the Interface
By creating custom components, the interface can be customized to meet your
business specifications. Some modifications can be as simple as replacing the
graphic images that appear on displayed pages. In this example, a sample,
customized interface is provided.

Before Customization:

After Customization:

2-6 Programmer’s Reference Guide

Understanding Component Architecture

Customizing Product Functionality
Customizations can be performed to the Content Server to change the
functionality of the software. For example, a custom component can be created
that changes how Info Fields (metadata) are presented. For example, the
Comments field on the Content Check In Form can be pre-filled with
information, or the Expiration Date can be specified as a required field.

Sample Content Check In Form:

Programmer’s Reference Guide 2-7

Understanding Component Architecture

Component Architecture and the Content Server

Server Behavior

The Content Server enables you to use a web browser to check in and retrieve
content items, control access to content items, and search for content items. This
section gives a high-level description of how the Content Server works using
the Verity Search API and Content Server search operations.

The web browser sends a request to the web server and the web server responds
to the request. Three types of requests to the web server can be made:

• Retrieve pages

• Run a system server service

• Run a search engine service

When a search request is made, the web server routes the request through the
Content Server. The system server then communicates with the search engine to
perform the search.

Server Information Flow:

2-8 Programmer’s Reference Guide

Understanding Component Architecture

Server Actions

There are three main types of server actions that can be performed with the
software:

• Page retrieval

• Content Server services

• Searching services

Page Retrieval

When a request for a page is made, one of two available page types is delivered.
The two types of pages are: static and dynamic.

• Static Page Retrieval—Only one of the pages in the Content Server web site
is considered static. This means that the content of the page is pre-formatted
at the time of the request. The home page, weblayout/portal.htm, is a static
page. When a browser request is made for this page the request is handled by
the standard functionality of the web server.

• Dynamic Page Retrieval—A protected page is also referred to as dynamic.
When a browser request is made for a protected page, a dynamic page such as
the standard query page or a search request, the web server relies on the
Content Server or the search engine to fulfill the request.

Content Server Services

When a request is made for a protected page, such as the Administration link on
the Personal Navigation area, the browser is placing a request for a Content
Server service. In the case of the Administration link, it is requesting the
GET_ADMIN_PAGE service. The URL of the Administration link contains the
following commands:

Idc_cgi_isapi.dll?IdcService=GET_ADMIN_PAGE&Action=GetTemplatePag
e&Page=ADMIN_LINKS

The web server recognizes this request as a Content Server function and sends
the specific request to the Content Server. When the Content Server processes
the request, it passes the result of the request back to the web server. The web
server then delivers the results of the Content Server service to your web
browser.

In the case of the Administration link, the service:

• Provides a login prompt if not currently logged in

Programmer’s Reference Guide 2-9

Understanding Component Architecture

• Verifies that the login has administrator privileges

• Assembles the ADMIN_LINKS template page and returns the page

When a file is checked in/out or a report requested from the database, the
Content Server performs the listed tasks. When a search request is submitted,
the browser first sends a request for the STANDARD_QUERY_PAGE
template. The Content Server also handles this request. The result of the request
is that the web server delivers a search form to the web browser.

Search Services

When a search form is completed and a request made, the browser sends a
request to the web server to perform a search. When using the search engine, the
URL for the request contains the following syntax:

/intradoc-cgi/idc_cgi_isapi.dll? idcService=GET_SEARCH_RESULTS

The web server recognizes this request as a Content Server function and sends
the specific request to the Content Server for processing. In doing so, the
Content Server sends a request to the search engine using a search engine API.

The search engine sends the search results back to the Content Server, which
sends the results to the web server. The web server then delivers the result of the
search service to the web browser.

The Content Server has been placed between the web server and the search
engine to enable the search and search results template to be processed based on
information supplied by the requestor. If additional security is needed for your
site, the Content Server can perform those functions. For example, limiting
search result fields based on the role of the user requesting the search.

2-10 Programmer’s Reference Guide

Understanding Component Architecture

Customizing Options

Customizing Graphics

The easiest way to change the look of the Content Server web site is to change
just the graphic images that are referenced on the corresponding template page.
Component Architecture is not required for making these types of changes,
however we do not recommend this method.

If you choose to change the image references without using Component
Architecture, you should be aware that it may have the following limitations:

• Awkward Geometry—The image may appear skewed or misshapen unless
image dimensions are identical to the original image replaced.

• No Addition/Deletion—You will only be able to replace images. You will
not be able to add or delete existing images. Additionally, after replacing the
images, you are still left with the same layout and functionality.

• Lost Data—Changes will be lost if the product has to be reinstalled or
upgraded, since the files in the <home>/weblayout/images/ directory will be
overwritten.

Image Format

The graphic images used by the software is located in the <home>/weblayout/
images/ directory. These images are in a GIF format that can be opened, viewed,
and edited in most any image editor. For best results, you should keep the image
geometry (height and width) of the replacement image the same as that of the
original image. If the height or width is changed, the web browser will scale the
images and the images may be distorted.

Programmer’s Reference Guide 2-11

Understanding Component Architecture

Image Referencing

All images are defined in the following file: <home>/shared/config/resources/
std_page.htm. To implement your images, either of these methods can be used:

Method 1

1. Give your new image the same name as the original image it will replace.

2. Copy the existing file (<home>/weblayout/images) to another location and
rename it.

3. Copy your new image files to the <home>/weblayout/images/ directory.

Method 2

1. Locate the image reference in the std_page.htm file.

2. Change the path name to accommodate the location of your new images.

3. Copy your new images to the folder located beneath the <home>/
weblayout/images/ directory.

2-12 Programmer’s Reference Guide

Understanding Component Architecture

Files Used for Customization
Most customizations made with Component Architecture are done with the files
that are found primarily in four directories:

• home>/bin/

• <home>/shared/config/

• <home>/config/

• <home>/weblayout

Bin Directory

To use the command line features of the Content Server, access the executable
files located in the <home>/bin/ directory.

Note: If you have the Content Server set up as an automatic service and attempt to
start the Content Server using this method (IdcServer or IdcServerNT) at the
command prompt, you will receive an error message that states: The port could not
be listened to and is already is use.

This is the default structure of the <home>/bin/ directory:

Element Description

bin The bin directory stores a number of executable files
including:

• BatchLoader

• Component Wizard

• SystemProperties

• IdcServer

• IdcServerNT

Programmer’s Reference Guide 2-13

Understanding Component Architecture

Config Directory

The <home>/config/ directory acts as a location for storing global information.
The two main files in the <home>/config/ directory that are utilized when
performing customizations with the component architecture process are
described in the following table.

Shared/Config Directory

The <home>/shared/config/ directory contains files with HDA and HTM
formats. This is the file structure with one Content Server instance installed.
The top-level in the directory used when customizing the product is described in
the following table.

Weblayout Directory

The weblayout directory contains images that are displayed on the various
pages of the content Server web site. The structure for the <home>/weblayout/
directory is described in the following table.

Element Description

components.hda The file that describes custom components that
have been added to the system.

config.cfg The file that defines system configuration
variables.

Element Description

reports Holds templates for the Content Server reports.
resources Holds resource definitions (queries, page resources, and

services) for the Content Server, including the
std_page.htm file.

templates Holds templates for all Content Server pages.

Element Description

weblayout The file that stores any images or web viewable
content items that are checked into the system.

2-14 Programmer’s Reference Guide

Understanding Component Architecture

Development Recommendations
This section contains some guidelines to assist you in developing custom
components. This information includes recommendations about development
instances, custom component file structures, naming conventions, case
observance, form methods, and server errors.

Development Instance

Whenever you are performing development, you should isolate your
development efforts from your production system. Remember to include the
same custom information fields you will be using in both your production and
development instances. Be sure to check in a few sample content items in your
development instance.

Once you have successfully tested your modifications on the development
instance, it is a simple matter of copying the required files to your production
system, installing the components using the <home>/config/components.hda
file and restarting your server.

If you are having problems with your server and you have installed custom
components, you may need to disable (uninstall) the custom components and
restart your server.

Component File Structure

Your custom components should be placed into their own directory. By default,
the Component Wizard places all custom components into a folder named
custom, which is located directly beneath the root Content Server installation.
Custom components do not have to be stored on the same machine as the home
installation, but must be accessible by the Content Server.

Images and other objects that must be referenced by HTML pages must reside
somewhere in the <home>/weblayout/ directory (which is accessible by the
web server).

Consistent File Structure

To keep your custom components organized, we recommend keeping a
consistent file structure that emulates the Content Server <home>/shared/
config/ directory. To accomplish this, create three sub-directories in the
component directory:

Programmer’s Reference Guide 2-15

Understanding Component Architecture

• resources/ for holding resource files

• templates/ for holding template files

• reports/ for holding report files

Place the component resource definition HDA file, at the top-level of your
component directory. When referencing files within these directories, use
relative path names. This makes it easier for you to move your component to a
different location without having to edit all of the files in the component.

For example, use templates/templates.hda to reference a templates.hda file in
the my_component/templates/ directory, instead of c:/my_component/
templates/templates.hda. This example shows that type of reference:

@ResultSet ResourceDefinition

4

type

filename

tables

loadOrder

template

templates/test_template.hda

null

1

@end

Note: The Content Server is a Java-based application. Forward slashes must be
used in the pathnames.

Naming Conventions

In the event that you have multiple components installed, and the components
share a common file name (for example, my_resource.htm) the definition for
the component that is loaded last will take precedence.

There are certain naming conventions that are recommended for developing
custom components. These recommendations extend to the directories,
individual files and the contents of those files.

2-16 Programmer’s Reference Guide

Understanding Component Architecture

Use Unique File Names

It is recommended that you give all of your component directories and files
unique and meaningful names. A common convention used with creating file
names is to place the prefix custom_ in front of the original file name. It is also a
preventative step for avoiding conflict among multiple components.

Use Appropriate File Name Extensions

HTM files should have an HTM extension and HDA files should have an HDA
extension. If you are creating the file with a text editor like WordPad, place the
file name within quotation marks so the proper file extension will be assigned to
it (for example,"myfile.hda"). Failure to use quotation marks to define the
file may result in a file name such as myfile.hda.txt.

Use Consistent Naming Conventions

Be consistent with your naming conventions. For example, if you are modifying
the standard query template (std_query.htm), it is recommended that you use a
naming convention like custom_query.htm for your modifications. This practice
is a two-fold solution: you do not overwrite any default templates and your
customizations are easy to categorize and identify.

Observe Case

The Content Server is case sensitive even if your file system is not. For
example, when a template name is defined as My_Template, the Content
Server will not recognize case variations such as my_template or
MY_TEMPLATE.

Change Form Methods

HTML forms have a method that is used to communicate the form data to the
web server. Change the METHOD attribute of any FORM from a POST to a
GET. This will enable you to see all of the parameters as they are passed from a
web browser to the web server, filtered through the Content Server and then
back to the web browser. To change the form method, you must make an entry
in your form’s HTML code with the METHOD="GET" command.

Programmer’s Reference Guide 2-17

Understanding Component Architecture

Read Server Errors

When developing components, there are a number of problems that can arise.
For example, you may have made a mistake somewhere in your files or the
Content Server detects something wrong with one or more of your files, such as
an extra carriage return or character: this can cause the server to fail to load a
file. If the server fails, it will report the error via the command prompt window
(on Windows NT) or to a log file (on UNIX).

Getting to that information is important to helping you resolve the problem.
How you get to the information depends on the operating system on which the
server is running.

Using the Content Admin Server page, the server log file can be viewed by
selecting the content server, and then clicking the View Server Output link.

Programmer’s Reference Guide 3-1

C h a p t e r

3
Chapter 3Understanding Component

Assembly

Overview
Component Architecture enables customizations to be made to the product
without modifying the original source files. To understand what happens when a
custom component is loaded, we must take a high-level view of the Content
Server’s behavior and then determine the additional processes.

Page Assembly
When a request is received from a web browser client for a dynamic page, the
server performs a specific set of actions to deliver that page. These actions
assemble template pages into the final displayed page. Each page provides
specific markup for the final displayed page and has a specific place in the final
page.

3-2 Programmer’s Reference Guide

Understanding Component Assembly

Resource types can be any of the following: HTML markup, queries to gather
information from the database, and special code to conditionally format the
information. Each assembled page has three standard conventions and
occasionally some dynamically generated data. As a rule, each page consists of
three resources:

• A standard page header.

• A standard page beginning.

• A standard page ending.

All of these definitions are cached in memory. When the server gets a request
for a page, it already has a definition for the pieces that appear on the page. The
server combines many elements together into a template that is ready to be
processed for a specific data request by the client. After the Content Server has
been started and loaded all of the resource information into the memory, it waits
for requests from clients.

Since this is the standard software behavior whenever you define new resources,
templates, or reports, you must restart the server. If you have made a change,
but the change does not appear to have taken affect, restart the server.

Programmer’s Reference Guide 3-3

Understanding Component Assembly

Server Start Up Actions
All the template pages in the Content Server are pre-parsed and cached. When
the Content Server starts, it reads the main templates table file templates.hda.
This table describes each template and points to the corresponding HTML
template file. The HTML template file is read and some of the HTML server
side scripts are resolved immediately. The resulting template page is then stored
in memory to speed up page presentation.

The following general steps occur when the server starts:

• Internal initialization occurs.

• Configuration variables load.

• Standard resources, templates, and reports load.

• Custom components load.

Internal Initialization Occurs

When the server initializes internally, the Java class files from the Content
Server are read and the Java Virtual machine is evoked.

Configuration Variables Load

After initializing, the Content Server locates the file name <home>/
config.cfg. The config.cfg file stores the system properties and default
configuration variables. The configuration file consists of a number of name/
value pairs.

The value assigned to each variable can be displayed in any specified template,
by using Idoc Script substitution. For example, if you want to display the
variable Master_on_secondserver, you could place the Idoc Script command
<$InstanceDescription$> within a template file.

The information contained within the configuration file was supplied during the
Content Server installation process.

3-4 Programmer’s Reference Guide

Understanding Component Assembly

Standard Resources, Templates, and Reports Load

There are number of resources, templates, and reports that need to be loaded for
the Content Server to function properly. A number of these files are located in
the following directories:

• <home>/shared/config/templates/

• <home>/shared/config/resources/

• <home>/shared/config/reports/

For the server to know which files to load, it reads the entries made in a file
located at: <home>/shared/config/templates/templates.hda. The templates.hda
file notifies the Content Server to load specific default templates.All of these
template files are stored in the directory <home>/shared/config/templates/ and
are the pages that make up the Content Server web site.

Custom Components Load

The Content Server loads any custom components last. The Content Server
locates the file named <home>/config/components.hda. The Content Server
then searches for references to any components that might be enabled. This is an
example of the components.hda file:

@ResultSet Components

2

name

location

My Component

C:/stellent/custom/my_component/my_component.hda

@end

In this example, the information contained within the components.hda file
directs the Content Server to the component definition file named
my_component.hda. The component definition file contains location references
to any new resources that have been defined.

Programmer’s Reference Guide 3-5

Understanding Component Assembly

Merge Rules
When developing custom components, the custom template files are referenced
by creating a component definition file named MergeRules. The MergeRules
table forces the Content Server to perform a comparison check on the name of
your table by the template page column table.

• If the name of your custom template page column matches the name of the
default template page column, your custom template will overwrite the
existing default template.

• If your custom template page name does not match any of the default
template page column names, your file will be appended to the templates
available in the <home>/shared/config/templates/ templates.hda file.

Component Architecture Process
Component architecture involves a variety of processes and include these steps:

1. Making copies of some of the standard templates.

2. Modifying those templates to meet your specifications.

3. Creating a ResourceDefinition table in the component definition HDA file
(this may or may not contain MergeRules).

4. Making a reference in the components.hda file to the name and location of
your component.

Components File

The components.hda file is located in the directory <home>/config/ and serves
as the ultimate location where your custom component’s name and location are
referenced. The components.hda file contains a result set name Components.
This is an example of the file structure:

@ResultSet Components

2

name

location

@end

3-6 Programmer’s Reference Guide

Understanding Component Assembly

Once you have defined a component, you will reference the component by
making an entry into the Components ResultSet that contains information about
the name and location of your custom component. An absolute path can be used
when specifying the location of your component or a relative path relative to the
Content Server home directory.

Component Definition File
The component definition HDA file is the portion of your component that points
to any custom resources that you have defined and, if applicable, defines any
accompanying MergeRules. This is an example of the general structure for the
component definition HDA file:

@ResultSet ResourceDefinition

4

type

filename

tables

loadOrder

@end

Once you have modified copies of the standard templates reference these
changes in the ResourceDefinition ResultSet.

Modifying Resources
After making changes to graphic images in your copy of the file <home>/
shared/config /std_page.htm, you must make an entry in the ResourceDefinition
table.

@ResultSet ResourceDefinition

4

type

filename

tables

loadOrder

resource

resources/my_std_page.htm

null

1

@end

Programmer’s Reference Guide 3-7

Understanding Component Assembly

After making an entry into the components.hda file, the file should be saved and
the server stopped and restarted to implement the changes.

Modifying Standard Templates

Follow these steps to modify the standard templates:

1. Make a copy of the templates you intend to modify and a copy of the file
templates.hda and place them into the component templates/ directory.

2. Within the templates.hda file, rename the ResultSet IntradocTemplates to
something descriptive, such as MyTemplates.

3. Delete all entries for the template names that you are not modifying, along
with the ResultSets VerityTemplates and SearchResultsTemplates.

4. Update the reference to the template name that is implemented by default to
the name of your custom template.

Note: Spaces can not be used in the table name.

@ResultSet MyTemplates

5

name

class

formtype

filename

description

HOME_PAGE

RootPage

HomePage

my_std_home_page.htm

Custom Home page for weblayout

CHECKIN_NEW_FORM

Document

CheckinForm

my_checkin_new.htm

3-8 Programmer’s Reference Guide

Understanding Component Assembly

Custom New Document Check in Form

CHECKIN_SEL_FORM

Document

CheckinForm

my_checkin_sel.htm

Custom Document Check in Form

DOC_INFO

Document

DocumentInfoForm

my_doc_info.htm

Custom Document Information Form

STANDARD_QUERY_PAGE

Search

QueryPage

my_std_query.htm

Custom Document Search Form

UPDATE_DOC_INFO

Document

UpdateDocInfoForm

my_update_docinfo.htm

Custom Document Update Doc Info Form

@end

Programmer’s Reference Guide 3-9

Understanding Component Assembly

In the ResultSet ResourceDefinition, make a reference to the templates.hda file
that you modified and then create a ResultSet MergeRules. In this example, the
templates.hda file has been renamed to mytemplates.hda and stored the file to
the path c:/MyComponent templates/. Also, the ResultSet in the
mytemplates.hda file has been renamed to MyTemplates.

@ResultSet ResourceDefinition

4

type

filename

tables

loadOrder

template

templates/mytemplates.hda

MyTemplates

1

@end

@ResultSet MergeRules

3

fromTable

toTable

column

MyTemplates

IntradocTemplates

name

@end

It is not necessary to separately define the new resources that have been defined.
By making reference to the mytemplates.hda file, the system has already been
instructed which templates (HTM files) to merge into the ResultSet
IntradocTemplates. The references made to templates such as
my_std_home_page.htm will be automatically detected when the server starts
up and the merge is performed.

After making an entry into the components.hda file, the file should be saved and
the server stopped and restarted to implement the changes.

3-10 Programmer’s Reference Guide

Understanding Component Assembly

Defining Custom Environment Resources

Create a text file at the top level of your component that has a file extension .cfg.
This file should be defined in the ResourceDefinition table and implemented by
making a reference to the component that contains the environment resource in
the components.hda file.

In this example, assume that we have opened the file my_environment.cfg and
defined an environment variable.

Customer=wise@intranetsolutions.com

ThemeColor=rose

To reference your environmental variables in copies of the templates to be
modified, you will use an Idoc Script tag, such as <$Customer$> or
<$ThemeColor$>. A reference in the components.hda file must be made for
your changes to be implemented. This is an example of an entry in the
ResourceDefinition ResultSet:

@ResultSet ResourceDefinition

4

type

filename

tables

loadOrder

environment

resources/my_environment.cfg

null

1

@end

Defining Custom Queries

To create a custom query, the process is much the same as creating a custom
template. However, you will have to make a copy of the query.htm resource file,
place it into the component resources file and modify the table entry to suit your
purposes. The structure of the Query Table is that it has three columns with the
following names: labels, queryStr, and parameters.

Programmer’s Reference Guide 3-11

Understanding Component Assembly

The HTM format of the file looks similar to the following code:

<HTML>

<HEAD>

<META HTTP-EQUIV=’Content-Type’ content=’text/html;
charset=iso-8859-1’>

<TITLE>Custom Query Definition Resources</TITLE>

</HEAD>

<BODY>

<@table MyQueries@>

<table border=1><caption>Custom Query Definition
Table</caption>

<tr>

<td>name</td><td>queryStr</td><td>parameters</td>

</tr>

<tr>

<td>Ireport</td>

<td>insert into Reports (dReportName, dProject,
dDescription) values (?, ?, ?)</td>

<td>dReportName varchar

dProject varchar

dDescription varchar

</td>

</tr>

<tr>

<td>Qreports</td>

<td>select * from Reports</td>

<td>

</td>

</tr>

</table>

<@end@>

</BODY>

</HTML>

3-12 Programmer’s Reference Guide

Understanding Component Assembly

In this instance, you would need to make an entry in the Component definition
HDA file and set a MergeRule. Once completed, the Component definition
HDA file will look similar to the following:

@ResultSet ResourceDefinition

4

type

filename

tables

loadOrder

query

resources/MyQueries.htm

MyQueries

1

@end

@ResultSet MergeRules

3

fromTable

toTable

column

MyQueries

QueryTable

name

@end

After making an entry into the components.hda file to reference your file, the
server should be stopped and restarted to implement the changes.

Programmer’s Reference Guide 3-13

Understanding Component Assembly

Defining Custom Services

The process of defining custom services is nearly identical to the process of
creating a custom query. The main difference lies in the information that you
must supply within the”.htm” file itself. Make a copy of the file <home>/
shared/config/ resources/std_services.htm and place it into the component
resources/ directory. Make entries into the table definition columns: Name,
Attributes, and Actions.

This is an example of the script used to define a custom service named
MyServices:

<HTML>

<HEAD>

<META HTTP-EQUIV=’Content-Type’ content=’text/html;
charset=iso-8859-1’>

<TITLE>Custom Scripted Services</TITLE>

</HEAD>

<BODY>

<@table MyServices@>

<table border=1><caption>Scripts For Custom
Intra.<i>doc!</i> Services

</caption>

<tr>

<td>Name</td><td>Attributes</td><td>Actions</td>

</tr>

<tr>

<td>ADD_REPORT</td>

<td>Service

18

ADD_REPORT_FORM

null

null

Unable to add report.</td>

3-14 Programmer’s Reference Guide

Understanding Component Assembly

<td>2:Ireport::0:null</td>

</tr>

<tr>

<td>REPORTS_LIST</td>

<td>Service

17

REPORT_LIST_FORM

null

null

Unable to retrieve reports.</td>

<td>5:Qreports:REPORT_LIST:0:null</td>

</tr>

</table>

<@end@>

</BODY>

</HTML>

Programmer’s Reference Guide 3-15

Understanding Component Assembly

The method of having the custom service recognized is by creating a reference
to your custom file in the ResourceDefinition ResultSet and by creating a
MergeRule that merges MyServices with the Services table. This is an example
of the associated Component definition HDA file:

@ResultSet ResourceDefinition

4

type

filename

tables

loadOrder

service

resources/MyServices.htm

MyServices

1

@end

@ResultSet MergeRules

3

fromTable

toTable

column

MyServices

Services

name

@end

Programmer’s Reference Guide 4-1

C h a p t e r

4
Chapter 4Understanding Resource Types

Overview
Resources play many roles within the Content Server environment. Resources
can be snippets of HTML code, dynamic page elements, HDA files within HTM
table, queries that gather information data from the database, or special code to
conditionally format specific information. Since resources are a critical part of
the software, it is essential to be familiar with them. Each resource type has its
own purpose, structure, and application.

Resources fall into seven distinct categories:

• HTML Include

• Static Table (HTML format)

• Dynamic Table (HDA format)

• Query

• Service

• Template

• Environment

4-2 Programmer’s Reference Guide

Understanding Resource Types

HTML Include
This is a resource type and part of an HTM file that is used to defined the pieces
of HTML markup that normally appear in more than one template or report file.
The standard HTML includes are defined in the <home>/shared/config/
resources/std_page.htm file

An example of one such resource is <@dynamichtml std_page_begin>. This
particular convention is used during the page assembly process for dynamic
pages. This resource is defined in the <home>/shared/config/resources/
std_page.htm file and defines the layout for how any standard page will begin.
This is a script sample from the std_page.htm file:

<@dynamichtml std_page_begin@>

<$if not coreContentOnly$>

<table border=0 cellpadding=0 cellspacing=0 width="100%"
height="100%">

<tr>

<!-- sidebar for nav links -->

<td width=<pne_nav_width> valign=top><$include
pne_nav_links$></td>

<!--Overall page table with logo and head banner -->

<$if widePage$>
<$StdPageWidth=550$><$else$><$StdPageWidth=500$><$endif$>

<td valign="top"><table border=0 cellspacing=0 cellpadding=0
width="100%">

<tr>

<!-- top banner -->

<td colspan=3 valign="top" align="left" height=1
width="100%" bgcolor="<$banner_top_color$>">

<img src= "<$HttpImagesRoot$> <$banner_top_image$>"

align="top" border="0"alt="Top banner logo."></td>

</tr>

…

<@end@>

Programmer’s Reference Guide 4-3

Understanding Resource Types

Any dynamic Include is referenced in an appropriate template file by using Idoc
Script:

<$include std_page_begin$>

4-4 Programmer’s Reference Guide

Understanding Resource Types

Dynamic Table
The dynamic table is a resource type with the HDA file format. These resource
types are used to define tables that will be used to communicate with the
Content Server during the page assembly process. This is an example of a
Dynamic Table resource:

@ResultSet ResourceDefinition

4

type

filename

tables

loadOrder

service

resources/preview_service.htm

preview_Services

1

query

resources/preview_query.htm

preview_Queries

1

template

templates/preview_template.hda

null

1

resource

resources/preview_resource.htm

null

1

@end

Programmer’s Reference Guide 4-5

Understanding Resource Types

Query
The query resource is a table that defines the location of an HTM file containing
the definition of database queries. The Content Server reads the default queries
defined in the system from the file <home>/config/shared/resources/query.htm.
Services that generate pages use queries to get data to merge into the template
pages.

A query .htm file can be opened in a Web browser or in a text editor. The
information is presented in tabular form when opened in a browser, and as script
with html tags and Idoc Script when opened in a text editor.

Important: Using an HTML editor in its graphical mode may cause Idoc Script tags
to be converted into a string of characters that will no longer be recognized by the
Content Server.

4-6 Programmer’s Reference Guide

Understanding Resource Types

Service
The service type resource defines the location of an HTM file containing the
definitions of service scripts. The standard service file is located at <home>/
shared/config/resources/std_services.htm.

An IdcService is a defined function or procedure that can be performed within
the Content Server. Since a service is a mechanism for interacting with the
Content Server and consequently the database, any program or HTML page that
requests information from the server or performs a function must use these
services.

The service type resource is discrete and may require parameters. Services are
also the only way a client can talk to the server or access the database. Services
are, in fact, the only way user-initiated functionality is implemented. This is
because the service is a call that could happen from either the client or server
side.

By having both server and client execute the same service, we ensure integrity
in the system. Everyone eventually does the same thing, even if they start from
completely different places. So if a browser requests all the users in the system,
it will perform the same service as the applet that requests all users. Services are
of primary importance when creating custom components to change server
behavior.

A .htm file can be opened in a Web browser or in a text editor. The information
is presented in tabular form when opened in a browser, and as script with html
tags and Idoc Script when opened in a text editor.

Important: Using an HTML editor in its graphical mode may cause Idoc Script tags
to be converted into a string of characters that will no longer be recognized by the
Content Server.

Programmer’s Reference Guide 4-7

Understanding Resource Types

Template
A template type defines the location of an HDA file. This HDA file contains a
table describing the names, types, and locations of template files that should be
loaded as part of this component.

An example of such a file can be found at the following location: <home>/
shared/config/ templates/templates.hda. This file holds the default templates
loaded by the system.

The templates.hda file defines three tables:

• The IntradocTemplates table contains the full list of cached template files.

• The VerityTemplates table contains the results templates used by the Verity
search script engine.

• The SearchResultTemplates table contains the search results pages
implemented by the Content Server.

4-8 Programmer’s Reference Guide

Understanding Resource Types

Environment
The environment resource type defines the location of a file with a .cfg
extension that enables a component to define its own configuration. An
environment resource file contains name/value pairs (using the same format as
the config.cfg file) and is loaded after the config.cfg file is loaded.

This is an example of the entries found in an environment resource file located
in the directory <home>/admin/config.cfg. The information contained in this
file will be different with each installation

HttpRelativeWebRoot=/stellent/

CgiFileName=idc_cgi_isapi.dll

HttpServerAddress=techpubs

IDC+Admin_Name+techpubs

#Internet Variables

Programmer’s Reference Guide 5-1

C h a p t e r

5
Chapter 5Understanding HDA and HTM File Types

Overview
The HDA and HTM file types are used extensively when performing custom
component development with the Content Server. Both the HDA and HTM files
types present tabular information. HDA files present tabular data in a simple
structured ASCII file format. The HDA file format is very useful for dynamic
data. The compact size and simple format of HDA files make data
communication faster and easier for the Content Server.

HTM tables are useful for storing information as tabular data that does not
change often. HTM tables allow resource information files to be displayed
properly in a web browser.

Because there are a variety of external files that are gathered to deliver
information to the user, a number of resources types are used. The resource
types queries and services use the HTM file format to communicate with the
Content Server. These resource types use the HDA format to get information to
and from the server: environment, template, resource, and dynamic tables.

5-2 Programmer’s Reference Guide

Understanding HDA and HTM File Types

HDA File Type
An HDA (hyper data) file is a structured ASCII text file. This file format is
designed to be compact to improve network communication. In addition, HDA
files allow for persistent storage. This provides the ability to maintain
consistency after the application reads in data and writes out any changes. The
system creates several files specifically for this purpose. HDA files are used to
define custom components that are added to Content Server. The types of
resources that use HDA files are: HTML includes, environment, dynamic
resource tables, and templates. There are two section types of an HDA file used
during the customization process: Properties and ResultSets.

HDA File Structure

An HDA file contains sections that begin with @SectionType and end with
@end. The two main section types in an HDA files created by the system are:
@Properties and @ResultSet. When creating custom components, the ResultSet
section type is primarily used.

Section Types

An HDA file is divided into two tagged sections of the form:

@SectionType sectionname
... Section data
@end

There are only two section types that are relevant to Component Architecture
development: @Properties and @ResultSet. All other section tags are for
internal application use only.

Note: None of the section types are mandatory and can be deleted if they are not
being used.

Purpose

The purpose of the HDA file is to store data and communicate with the Content
Server when a request for a Content Server service is made. Service request data
is comprised of name/value pairs that are defined in the properties section of the
HDA file named LocalData. When using applets to make a service request, the
data exists in the form of a ResultSet.

Programmer’s Reference Guide 5-3

Understanding HDA and HTM File Types

HDA Section Type: @Properties

The @Properties section of an HDA file consists of a set of name/value pairs
(for example, IsJava=1) separated by carriage return line feeds. This section
type begins with @Properties name and ends with the syntax @end.

For custom component creation, the only valid name for a Properties section is
LocalData. This is because the name/value pairs are only valid for the current
HDA file. The LocalData section refers to data specific to this particular file.

Structure

A Properties section has the following structure:

@Properties LocalData

property1_name=property1_value

property2_name=property2_value

...

propertyn_name=properlyn_value

@end

There is no comment escape character for the Properties section of an HDA file.
However, you can place comments in the file either before the start of the
Properties section (@Properties) or after the end of the Properties section
(@end).

An example of a Properties section is the index.hda file, located at <home>/
documentation/data/pages/index.hda. This is a sample of that file:

@Properties LocalData

PageLastChanged=952094472723

LocationInfo=Directory,Public,

IsJava=1

refreshSubMonikers=

PageUrl=/intradoc/groups/public/pages/index.htm

LastChanged=-1

TemplatePage=DIRECTORY_PAGE

IdcService=PAGE_HANDLER

LinkSelectedIndex=0

5-4 Programmer’s Reference Guide

Understanding HDA and HTM File Types

PageName=index

HeaderText=This is a sample page. The Page Name must remain
index. The Page Properties for this index page should be
customized.

PageFunction=SavePage

dSecurityGroup=Public

restrictByGroup=1

PageType=Directory

PageTitle=Stellent Content Server Index Page

@end

The LocalData consists of name/value pairs. This information is only
maintained during the lifetime of the request and response. Unlike information
about the server environment, which rarely changes, the information for each
request is dynamic. From the point of view of an HTTP request, the initial
LocalData is collected from the REQUEST_METHOD, CONTENT_LENGTH,
and QUERY_STRING HTTP environment variables. As the service request is
processed, the values in the LocalData section will be added and changed.

HDA Section Type: @ResultSet

The @ResultSet section of an HDA file consists of a data representation of the
results of a database query. ResultSets include serialized HDA tables.

These steps describe the page assembly process:

• Information is retrieved from the std_page_begin, std_page_end, and
std_header_sections.

• The database is queried and the results are returned.

• The returned information is merged to complete the final page.

• A ResultSet becomes active during a loop of a page merge. The active
ResultSet take precedence over any other ResultSets during a value search.

The @ResultSet section holds a definition of a table with the number of
columns on the first line, the names of the columns on the next lines and the
actual row values in the same order as the columns on the last lines.

Programmer’s Reference Guide 5-5

Understanding HDA and HTM File Types

A ResultSet section begins with @ResultSet name and ends with the @end tag.
This section enables you to define columns and rows of data (a table) when
creating components. Unlike a Properties section, a ResultSet name is not
limited to a single value. The ResultSet can be given any name. However,
certain names used by the Content Server are reserved.

This table lists some of the standard ResultSet names that have significance to
the Content Server:

There is no comment character for a ResultSet section of an HDA file. Blank
lines must not be left between the start of a section (@ResultSet) and the
corresponding end of the section (@end). Blank lines and text can only be used
between sections.

Note: An HDA file is not web viewable.

ResultSet Name Significance

Components This file contains references to the name and
location of any components you may have
created.

IntradocReports This file contains information about any reports
that have been defined in the system.

IntradocTemplates This file holds all of the default templates for
the system. Do not overwrite this file.

ResourceDefinition This file contains information about any
components that you might create.

SearchResultsTemplates This file holds information about any custom
templates created for returning SearchResults to
the browser.

5-6 Programmer’s Reference Guide

Understanding HDA and HTM File Types

Structure

A ResultSet provides the ability to define columns and rows of data. After the
@ResultSet name, the number of columns that the serialized table will contain
is listed. The names of each of the columns with one column name per line are
then listed. Each row of the table is then defined, one column at a time, with
each column value appearing on a separate line. This is an example of the file
structure for a ResultSet that has n columns and m rows:

@ResultSet name

n

column1-name

column2-name

…

columnn-name

row1-column1-value

row1-column2-value

…

row1-columnn-value

row2-column1-value

row2-column2-value

…

row2-columnn-value

rowm-column1-value

rowm-column2-value

…

rowm-columnn-value

@end

Programmer’s Reference Guide 5-7

Understanding HDA and HTM File Types

Sample ResultSet
This sample depicts a ResultSet named scores. It contains four columns: name,
game1, game2, and game3. There are four sets of data for this ResultSet:

@ResultSet scores

4

name

game1

game2

game3

Jim,

187

145

154

Joe

125

167

121

John

134

134

123

Sam

125

114

133

@end

name game1 game2 game3
Jim 187 145 154
Joe 125 167 121

John 134 134 123
Sam 125 114 133

5-8 Programmer’s Reference Guide

Understanding HDA and HTM File Types

Data Binder

The Content Server stores a service request internally in a Data Binder. The
Data Binder manages information and organizes it into these distinct categories:

• LocalData

• ResultSets

• Environment

The Data Binder differentiates between active and non-active ResultSets during
the creation of an HTML page. The Data Binder categories are used to group
data to determine where the data came from and how it was created. This
enables the system to determine such things as search precedence when looking
up a value.

By default, when trying to evaluate the substitution of a lookup key, the data in
the request is evaluated in the following order:

1. LocalData

2. Active ResultSets

3. All other ResultSets

4. Environment

Note: This precedence can be changed using Idoc Script functions.

An HDA file is a serialized Data Binder and is used for both communication
and data representation. The @Properties LocalData category maps to the
LocalData of the Data Binder and the @ResultSet category maps to a named
result in the Data Binder.

Programmer’s Reference Guide 5-9

Understanding HDA and HTM File Types

HTM File Type
An HTM file is an HTML file type, but is not an HTML document. The
difference is that an HTML file is ready for viewing in a web browser, but an
HTM file is not. A number of HTM files are found in these directories:

• <home>/shared/config/templates/

• <home>/shared/config/reports/

• <home>/shared/config/resources/

There are three types of HTM files within the Content Server:

• templates

• reports

• resources

Templates and Reports

Templates and reports deliver a web page during the page assembly process.
However, an HTM file contains a large amount of script that has not been
resolved by the Content Server and will remain unresolved until the final page is
assembled. These HTM files are template files, not displayable HTML files.

Resources

Resources play a variety of roles within the system. Generally, they are used to
present information displayed as a web page in a browser.

HTM Tables

The HTM format is another type of table used by the Content Server. An HTM
table is very similar to the HDA format, except that it uses HTML table tags to
layout the format. This enables the resource files to be displayed properly in a
web browser.

5-10 Programmer’s Reference Guide

Understanding HDA and HTM File Types

Structure

A table, or ResultSet, in an HTM file begins with <@table name@> and ends
with <@end@>. Between the start and end markup tags is an HTML table.
Unlike a ResultSet in an HDA file, the number of columns do not need to be
specified. This is implied by the table markup.

Like an HDA file ResultSet, the column names in the first table row are listed
first. The data for each row of the table follows. HTML comments are allowed
within the table. The HTML style attribute can be used to format the contents to
improve the presentation of the data in a web browser.

This is an example of the structure of a ResultSet in an HTM file. The ResultSet
has n columns and m rows.

<@table TableName@>

<table border=1>

<caption>Table Description</caption>

<tr>

 <td>ColumnName1</td>

 <td>ColumnName2</td>

 …

 <td>ColumnNamen</td>

</tr>

<tr>

 <td>Row1ColumnValue1</td>

 <td>Row1ColumnValue2</td>

 …

 <td>Row1ColumnValuen</td>

</tr>

<tr>

 <td>Row2ColumnValue1</td>

 <td>Row2ColumnValue2</td>

 …

 <td>Row2ColumnValuen</td>

</tr>

Programmer’s Reference Guide 5-11

Understanding HDA and HTM File Types

…

<tr>

 <td>RowmColumnValue1</td>

 <td>RowmColumnValue2</td>

 …

 <td>RowmColumnValuen</td>

</tr>

</table>

<@end@>

Note: Any HTML syntax that does not define the data structure is ignored when the
table is loaded. For example, all the <td> tags can use any of their options (such as
alignment or spacing) and the title can be formatted to taste. The HTM format is
useful for resources that are read in and parsed by an application but are never
changed except through manual editing.

Dynamic Content Resources

Dynamic content resources are HTML markup that is used in more than one
template or report file. This dynamic content consists of the resources that
assemble the HTML page. These resources are defined in the <home>/shared/
config/resources/ std_page.htm file.

Structure

Dynamic resources begin with the tag <@dynamichtml name@> and end with
the tag <@end@>. The name of the resource is how the HTML markup is
referenced in template and report HTM files. To reference a template or report,
the HTM file contains an include statement. For example: <$include name$>.
The variable name is the information to be included in the file. There are three
pieces of dynamic content that are a part of almost every page in the Content
Server web site. These are defined in the std_page.htm file:

• body_def

• std_page_begin

• std_page_end

5-12 Programmer’s Reference Guide

Understanding HDA and HTM File Types

These items are included in page templates by using the following markup
<$include body_def$> <$include std_page_begin$>, and <$include
std_page_end$>, respectively.

Body Definition

The body definition (BODY element) appears on almost every page in a
Content Server web site. The body element definition sets the page background
color, the color of hyperlinks, and the background image.

For example:

<@dynamichtml body_def@>

<!--Background image defined as part of body tag--->

<body

<$if background_image$>

 background="<$HttpImagesRoot$><$background_image$>"

<$elseif colorBackground$>

bgcolor="<$colorBackground$>"

<$endif$>

link="#663399" vlink="#CC9900"

<$if noBackgroundIndent$>marginwidth="0" marginheight="0"
topmargin="0" leftmargin="0"<$else$>topmargin="10"
leftmargin="10"

<$endif$>

>

<@end@>

Page Begin

This example demonstrates how most pages begin in a Content Server web site.
By examining the source script, it can be determined that most of the page
content is inserted into a table. This table includes several rows and columns
that allow space for the sidebar and its links, space for the logo, and any
additional content. This is the code for the std_page_begin resource:

<@dynamichtml std_page_begin@>

<$if not coreContentOnly$>

Programmer’s Reference Guide 5-13

Understanding HDA and HTM File Types

<table border=0 cellpadding=0 cellspacing=0 width="100%"
height="100%">

<tr>

<!-- sidebar for nav links -->

<td width=<pne_nav_width> valign=top><$include
pne_nav_links$></td>

<!--Overall page table with logo and head banner -->

<$if widePage$>
<$StdPageWidth=550$><$else$><$StdPageWidth=500$><$endif$>

<td valign="top"><table border=0 cellspacing=0 cellpadding=0
width="100%">

<tr>

<!-- top banner -->

<td colspan=3 valign="top" align="left" height=1 width="100%"
bgcolor="<$banner_top_color$>">

<img src= "<$HttpImagesRoot$> <$banner_top_image$>"

align="top" border="0"alt="Top banner logo."></td>

</tr>

<tr>

<td colspan=3 height=20> <!--vertical spacer--></td>

</tr>

<tr>

<!-- horizontal spacer -->

<td width=10><img src="<$HttpImagesRoot$>space.gif" alt=""
width=10></td>

<!-- purple nav bar -->

<td valign="top" align="right" valign="middle">

<img src="<$HttpImagesRoot$>header_curve.gif" width=12 height=24
border=0>

</td>

<td bgcolor="#993399" valign="middle" align="left" width="100%"
nowrap>

5-14 Programmer’s Reference Guide

Understanding HDA and HTM File Types

 Back</
a> | <$if isTrue(#env.IsProxiedServer)$>

<a class=headerNav href="<$HttpEnterpriseCgiPath$>
?IdcService=GET_DOC_PAGE&Action=GetTemplatePage&Page=HOME_PAGE”>
Home |

<a class=headerNav href="<$HttpCgiPath$>
IdcService=GET_DOC_PAGE&Action= GetTemplatePage&Page=HOME_PAGE">
<$#env.InstanceMenuLabel$> |

<$else$>

<a class=headerNavhref="<$HttpCgiPath$>
?IdcService=GET_DOC_PAGE&Action= GetTemplatePage&Page=HOME_PAGE">
Home |

<$endif$>

<a class=headerNav
href="<$HttpCgiPath$>?IdcService=GET_DYNAMIC_PAGE&PageName=index"
>Library |

<a class=headerNav
href="<$HttpCgiPath$>?<$strTrimWs(inc(’std_query_page_link_args’)
)$>"

>Search |

<a class=headerNav href="<$HttpHelpRoot$>default.htm"
target="IntradocHelp">Help

</td>

</tr>

</table>

<$endif$>

<!--Overall table row which contains sidebar and dynamic listing
of folders and documents (main display area) -->

<table border=0 width=<$StdPageWidth$> border=0 cellspacing=0
cellpadding=0>

<tr>

<td rowspan=1000 width=15><img
src="<$HttpImagesRoot$>space.gif" alt="" width=15></td>

</tr>

Programmer’s Reference Guide 5-15

Understanding HDA and HTM File Types

<tr>

<td height=15><!-- vertical spacer --></td>

</tr>

<tr>

<td width="<$StdPageWidth$>" valign="top" align="center"
colspan=3>

<@end@>

Page End

This example of dynamic content shows how the script in most Content Server
web pages ends. In this definition the table cell (TD element) is closed, the table
row (TR element) is closed, and, the table (TABLE element) is closed.

<@dynamichtml std_page_end@>

<!-- new page end -->

<!--Main display area column end-->

<!--End content table -->

</td>

</tr>

</table>

Including Dynamic Content in a Template

This is an excerpt from the <home>shared/config/templates/admin.htm
template file includes dynamic content in a template. This information is
defined in the <home>shared/config/resources/std_page.htm file as
<@dynamichtml name@> and is included in individual template files with the
convention <$include name$>.

This example shows the admin.htm template file:

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">

<html>

<head>

5-16 Programmer’s Reference Guide

Understanding HDA and HTM File Types

<$defaultPageTitle="Administration"$>

<$include std_html_head_declarations$>

</head>

<$include body_def$>

<$include std_page_begin$>

<$include std_header$>

…

<$include std_page_end$>

</div>

</body>

</html>

Programmer’s Reference Guide 6-1

C h a p t e r

6
Chapter 6Understanding the Component

Definition File

Overview
The component definition file is an HDA file that defines specific ResultSets.
These ResultSets define the location of resources and merge information for a
custom component.

There are two types of ResultSets in a component definition file:

• ResourceDefinition

• MergeRules

6-2 Programmer’s Reference Guide

Understanding the Component Definition File

ResourceDefinition
The ResourceDefinition ResultSet is defined in an HDA file and is used by the
Content Server to define the location of the resources that make up a custom
component.

This is the structure of the ResourceDefinition ResultSet:

@ResultSet ResourceDefinition

4

type

filename

tables

loadOrder

resource1-type

resource1-filename

resource1-tables

resource1-loadOrder

resource2-type

resource2-filename

resource2-tables

resource2-loadOrder

…

resourcen-type

resourcen-filename

resourcen-tables

resourcen-loadOrder

@end

Programmer’s Reference Guide 6-3

Understanding the Component Definition File

ResourceDefinition Columns

A ResourceDefinition ResultSet consists of four columns. Each column has an
associated function. These are the ResourceDefinition columns:

• type

• filename

• tables

• loadOrder

type

The type column can be one of six resource types. These are the resource types
and the associated functions:

filename

The filename column is the name of the file that defines a specific resource.
This entry can be an absolute or relative path. To use a relative path the resource
should be located in the appropriate custom component directory:

• resources/ directory for a resource type.

• templates/ directory for a page template.

• reports/ directory for a report template.

Type Function

Environment Used to define global variables, as well as
hiding and displaying certain metadata fields.

Dynamic Resource
Table

Used to define dynamic content for HTML
pages (HDA tables).

Static Resource
Table

Used to define content for HTML pages (HTM
tables).

Template Used to define page and report templates.

Query Used to define database queries.

Services Used to define Content Server services.

6-4 Programmer’s Reference Guide

Understanding the Component Definition File

For example, this allows the use of the relative path templates/mytemplates.hda
instead of the entire file path, c:/<home>/mycomponentshared /templates/
mytemplates.hda.

tables

The tables column includes all of the ResultSets (tables) that should be loaded
from the resource file. Table names are separated with a comma. If the resource
file does not include ResultSets, this value will be null. Dynamic content
resources do not include table definitions, so a reference to a dynamic content
file will always use null in the tables column.

loadOrder

The loadOrder column is used to determine the order in which this resource is
loaded. If you have more than one resource with the same name, the last
resource loaded is the one used by the system. Normally, set this to a value of
one (1).

When the Content Server reads a resource definition, only the environment and
dynamic content resources are actually available for use by the system. To
direct the system to load resources other than environment or dynamic content,
MergeRules must be defined. The MergeRules specify which resources will be
loaded and which specific internal tables they will be loaded into.

Example ResourceDefinition

This is an example of a ResourceDefinition. The name, number of columns, and
column names are fixed because this is a ResourceDefinition ResultSet. This
ResourceDefinition defines four resources, one of each type:

Type Filename Tables loadOrder

resource resources/
mypageresources.

htm

null 1

template templates/
mytemplates.hda

MyTemplates 1

Programmer’s Reference Guide 6-5

Understanding the Component Definition File

@ResultSet ResourceDefinition

4

type

filename

tables

loadOrder

resource

resources/mypageresources.htm

null

1

template

templates/mytemplate.hda

MyTemplates

1

query

resources/myqueries.htm

MyQueries

1

service

resources/myservices.htm

MyServices

1

@end

query resources/
myqueries.htm

MyQueries 1

service resources/
myservices.htm

MyServices 1

Type Filename Tables loadOrder

6-6 Programmer’s Reference Guide

Understanding the Component Definition File

MergeRules
Environment and dynamic content resources are available as soon as they are
loaded. However, for all other resources, the system needs to know where to
merge the resource information. This is accomplished by creating merge rules.
Merge rules are defined using a MergeRules ResultSet. Since this ResultSet has
the name MergeRules, it comes with a predefined number of columns and
predefined column names. A MergeRules ResultSet has the following structure:

@ResultSet MergeRules

3

fromTable

toTable

column

mergerule1-fromTable

mergerule1-toTable

mergerule1-column

mergerule2-fromTable

mergerule2-toTable

mergerule2-column

…

mergerulen-fromTable

mergerulen-toTable

mergerulen-column

@end

MergeRules Columns

A MergeRules ResultSet consists of three columns. Each column has an
associated function. These are the MergeRules columns:

• fromTable

• toTable

• column

Programmer’s Reference Guide 6-7

Understanding the Component Definition File

fromTable

The column fromTable represents a new table that your component has defined
and loaded as part of the ResultSet ResourceDefinition. To properly perform a
merge, the fromTable must have the identical format as the toTable.

In the previous ResourceDefinition example, three tables were loaded:
MyTemplates, MyQueries, and MyServices. These three tables are now
available for use as a fromTable.

toTable

The column toTable is the name of an existing table. Usually, this is one of the
Content Server internal tables, such as the IntradocTemplates table or
QueryTable table.

column

The column column is the name of the column that Content Server performs a
comparison on for the merge. Usually this value will be name. In some cases,
you may set it to null. Setting the value to null will default to the first column,
which is generally a name column.

For each row of the fromTable, if the content of column is not identical to a row
already in the toTable, a new row is added to the toTable and populated with the
data from the row of fromTable. However, if the content of column is identical
to an entry already in the toTable, the row in the toTable is replaced by the row
in the fromTable.

Example MergeRules

In this example, two ResultSets, scores and newscores are defined. An
explanation of merging newscores into scores and of merging scores into
newscores is also provided.

6-8 Programmer’s Reference Guide

Understanding the Component Definition File

scores
The scores ResultSet has four columns labeled: name, game1, game2, and
game3. There are four rows of information in the scores ResultSet. The
following figure shows the HDA file representation of scores, as well as a
tabular representation. Think of the tabular representation as the ResultSet
scores after it has been loaded into memory by the system.

@ResultSet scores

4

name

game1

game2

game3

Jim

187

145

154

Joe

125

167

121

John

134

134

123

Sam

125

114

133

@end

name game1 game2 game3
Jim 187 145 154
Joe 125 167 121

John 134 134 123
Sam 125 114 133

Programmer’s Reference Guide 6-9

Understanding the Component Definition File

newscores

The newscores ResultSet has the same structure as the scores ResultSet. There
are four columns labeled: game1, game2, and game3. There are three rows of
data in ResultSet newscores. This example shows the HDA file representation
of the newscores ResultSet, as well as a tabular representation of the data. Think
of the tabular representation as the ResultSet newscores after it has been loaded
into memory by the system.

@ResultSet scores

4

name

game1

game2

game3

Amdy

238

220

237

Ken

165

148

145

Jim

178

183

162

@end

name game1 game2 game3
Andy 238 220 237
Ken 165 148 145
JIm 178 183 162

6-10 Programmer’s Reference Guide

Understanding the Component Definition File

Merging newscores into scores

The first merge to occur is defined in the ResultSet MergeRules of the following
figure. The fromTable is defined as newscores, and the toTable is defined as
scores. The column on which to merge is name.

• This figure shows that the three rows of newscores are merged into the four
rows of scores. The result is the scores ResultSet is given six total rows.
Row-by-row, the merge happens as follows:

• The newscores row named Andy is not present in scores, therefore, the entire
row is appended to scores.

• The newscores row named Ken is not present in scores, therefore, the entire
row is appended to scores.

• The newscores row named Jim is present in scores, the old row named Jim is
replaced with the contents of the newscores row named Jim.

@ResultSet MergeRules

3

fromTable

toColumn

newscores

scores

name

@end

name game1 game2 game3
Jim 178 183 162
Joe 125 167 121

John 134 134 123
Sam 125 114 133
Andy 238 220 237
Ken 165 148 145

Programmer’s Reference Guide 6-11

Understanding the Component Definition File

Merging scores into newscores

The second merge to occur is defined in the ResultSet MergeRules of the
following figure. The fromTable is defined as scores, and the toTable is defined
as newscores. The column on which to merge is name.

This figure shows that the four rows of scores are merged into the three rows of
newscores. The result is the newscores ResultSet is given six total rows. Row-
by-row, the merge happens as follows:

• The scores row named Jim is present in newscores, therefore old row named
Jim is replaced with the contents of the scores row named Jim.

• The scores row named Joe is not present in newscores, therefore the entire
row is appended to newscores.

• The scores row named John is not present in newscores, therefore the entire
row is appended to newscores.

• The scores row named Sam is not present in newscores, therefore the entire
row is appended to newscores.

@ResultSet MergeRules

3

fromTable

toTable

column

scores

newscores

name

@end

name game1 game2 game3
Andy 238 220 237
Ken 165 148 145
Jim 187 145 154
Joe 125 167 121

John 134 134 123
Sam 125 114 133

Programmer’s Reference Guide 7-1

C h a p t e r

7
Chapter 7Understanding the Components

HDA File

Overview
The components.hda file enables software to access your component and is
located in the <home>/config/ directory. This file contains a ResultSet named
Components.

Component Structure
This is the structure of the Components ResultSet:

@ResultSet Components

2

name

location

component1-name

component1-location

component2-name

component2-location

7-2 Programmer’s Reference Guide

Understanding the Components HDA File

…

componentn-name

componentn-location

@end

Component Columns

A Components ResultSet consists of two columns. Each column has an
associated function. These are the Components columns:
• name

• location

• column

name
The name column is used to identify a component in case the Content Server
has problems loading the component files. If there are major problems, the
server may not start. Server errors can be checked using the Content Admin
Server.

location
The location column references a location. Any location supplied can be an
absolute or relative path to the Component definition HDA file. Since the
recommendation is to place any new component into its own directory outside
of <home>, it is easiest to use an absolute path. Always use forward slashes in
the path name.

You may have multiple components referenced in the ResultSet. The order that
they are listed is significant. If your first component in the ResultSet has a
resource with the same name as the second component, the entry in the second
component will take precedence.

Implementing a Component

To implement your component, simply make a two-line entry into the <home>/
config/components.hda file that supplies the name and location of your custom
component. Any name can be used for your component, but it is recommended
that the name be related to the function of your component.

Programmer’s Reference Guide 7-3

Understanding the Components HDA File

This example references a component named glue.hda:

@ResultSet Components

2

name

location

This is my component

c:/stellent/MyComponent/glue.hda

@end

The Component Wizard is used to enable a custom component as does the
Component Manager functionality of the Content Admin Server. When a
custom component is enabled a two-line entry is made in the components.hda
file.

Removing A Component

To remove your component, simply remove the two-line entry from the
components.hda file. An alternative is to move the two line entry so that it
appears after the @end tag, as in the following example:

@ResultSet Components

2

name

location

@end

This is my component

c:/stellent/MyComponent/glue.hda

After installing or removing a component the Content Server must be restarted.

The Component Wizard is also used to disable a custom component as does the
Component Manager functionality of the Content Admin Server. When a
custom component is disabled an entry is removed from the components.hda
file.

7-4 Programmer’s Reference Guide

Understanding the Components HDA File

Configuration File
The configuration file is located at <home>/config/config.cfg and enables you
to define global variables for the system. This allows you to access global
variables within your component. This example illustrates a typical
configuration file:

#Intradoc system properties

IDC_Name=Master_on_secondserver

InstanceMenuLabel=Master_on_secondserver

InstanceDescription=Master_on_secondserver

#Database Variables

IsJdbc=false

JdbcDriver=com.ms.jdbc.odbc.JdbcOdbcDriver

JdbcConnectionString=JDBC:ODBC:intradoc

JdbcUser=sa

JdbcPassword=

#Internet Variables

HttpServerAddress=secondserver

MailServer=mail.company.com

SysAdminAddress=sysadmin@company.com

SmtpPort=25

HttpRelativeWebRoot=/stellent/

CgiFileName=idc_cgi_isapi.dll

WebProxyAdminServer=true

#General Option Variables

EnterpriseSearchAsDefault=true

Programmer’s Reference Guide 7-5

Understanding the Components HDA File

#Additional Variables

IsFormsPresent=true

IntradocServerPort=4444

NtlmSecurityEnabled=standard security

HttpRelativeCgiRoot=/intradoc-cgi/

Important: Modifying the default variables defined in config.cfg can cause your
software to malfunction.

Global variables can be defined in a separate file that has the same structure as
the <home>/config/config.cfg file. This separate file is normally maintained
with the rest of the files that define a component and is loaded by placing the
following entry into the ResultSet ResourceDefinition:

@ResultSet ResourceDefinition

4

type

filename

tables

loadOrder

environment

component_variables.cfg

null

1

@end

Defining a Variable

Within the config.cfg file, a global variable can be defined by entering the
variable name and the value on the same line of the file separated by an equal
sign. For example, to add a variable for the e-mail address of an individual in
the Complaint Department, you would add a single line to the file, similar to the
following:

Complaints=bill@mycompany.com

7-6 Programmer’s Reference Guide

Understanding the Components HDA File

Referencing a Variable

After creating a variable in the config.cfg file, it can be included in your
templates and resources with the following syntax: <$variablename$>. To
reference the Complaints variable used in the “Defining a Variable” section,
you would use <$Complaints$>.

Programmer’s Reference Guide 8-1

C h a p t e r

8
Chapter 8Understanding Templates

Overview
Templates can be classified into two distinct categories: presentation templates
and resource templates.

• Presentation templates are those that contain Idoc Script and HTML and will
ultimately become the actual pages that the Content Server web site delivers.

• Resource templates are those that define the information that is used by the
presentation templates to deliver a web page. The resource templates define
pieces of dynamic content that are incorporated into presentation templates
using <$include name$> statements.

Content Server Loading

All resources in the application are cached at start up. The Content Server
supports active loading of the templates and HTML resource include files. For
example, the revision history template page can be edited and its changes
become instantly available. However, this is only true for templates and
resource includes. The Content Server does not actively load the list of custom
components, services, queries, or environment if the list of components,
services, or queries has changed. If a change has occurred, the Content Server or
any stand-alone applications must be restarted before the changes will be
reflected in the application.

8-2 Programmer’s Reference Guide

Understanding Templates

Templates File
The templates.hda file is located in the <home>/shared/config/templates/
directory and contains information about which presentation templates will be
used to help the Content Server deliver the various default web pages.

The templates.hda file contains three ResultSets:

• IntradocTemplates

• VerityTemplates

• SearchResultsTemplates

IntradocTemplates

IntradocTemplates is a ResultSet that defines the templates used with the
system. IntradocTemplates is a ResultSet that defines the templates used with
the system. The ResultSet has the structure shown in the following example. A
description of each column follows the ResultSet structure.

@ResultSet IntradocTemplates

5

name

class

formtype

filename

description

template1-name

template1-class

template1-formtype

template1-filename

template1-description

template2-name

template2-class

template2-formtype

template2-filename

template2-description

Programmer’s Reference Guide 8-3

Understanding Templates

…

templaten-name

templaten-class

templaten-formtype

templaten-filename

templaten-description

@end

In tabular format, the information contained in the example file would have the
following structure:

IntradocTemplates Columns

An IntradocTemplates ResultSet consists of five columns. Each column has an
associated function. These are the IntradocTemplates columns:

• name

• class

• formtype

• filename

• description

name class formtype filename

description HOME_PAGE RootPage HomePage

pne_home_page.htm Home Page for
weblayout

ADMIN_LINKS Administration

AdministrationLinks admin.htm Page containing
links to
administration
applets and forms

8-4 Programmer’s Reference Guide

Understanding Templates

name

The name column represents the unique name of the template page. This is how
the template is referenced in the Content Server CGI URLs and in code. When
merging custom template file entries into the IntradocTemplates table, it is used
as the merge key.

For example, the URL for the standard search page, references the name of the
page, STANDARD_QUERY_PAGE. If you find the
STANDARD_QUERY_PAGE entry in the IntradocTemplates table, you will
see that the name of the file that implements this template is called
std_query.htm.

IdcService=GET_DOC_PAGE&Action=GetTemplatePage&

Page=STANDARD_QUERY_PAGE

This is the templates.hda file entry for the STANDARD_QUERY_PAGE:

STANDARD_QUERY_PAGE

Search

DocQueryPage

std_query.htm

Document Search Form

class

The class column represents the general category of the template. For example,
many of the template pages are part of the document class. For examples see the
<home>/shared/config/templates/ templates.hda file and look at
CHECKIN_LIST, CHECKIN_NEW_FORM.

Note: Currently class is not used by the system, but may be used in future product
releases to trigger extra functionality that would be specific to a particular class of
templates. It is good coding practice to always categorize application elements when
there are a large number of them.

Programmer’s Reference Guide 8-5

Understanding Templates

formtype

The formtype column represents the specific type of functionality the page is
trying to achieve. There are almost as many form types as there are templates
within the ResultSet IntradocTemplates. In some cases, the form type
determines if the template needs to be updated. For example, when we add a
new search results page, it is referenced by the Web Layout Editor Query Result
Pages menu option.

filename

The filename column represents the path to the template file. This can be either
a relative path or an absolute path. A relative path is relative to this
templates.hda file. The relative path is relative to the file holding the reference
to the file name.

description

The description column contains a user-friendly description of the template. It
may be used by the Content Server to display a description of a selected
template in the Administration Tools.

8-6 Programmer’s Reference Guide

Understanding Templates

VerityTemplates
As of version 3.5.3, the software no longer uses the VerityTemplates ResultSet.
However, the VerityTemplates ResultSet remains a part of the templates.hda
file as legacy code.

SearchResultTemplates
The SearchResultTemplates are used to build the search result pages of the
Content Server web site. SearchResultTemplates contain Idoc Script, which is
processed at the time a search is actually requested by a web browser.

Note: This ResultSet was known as VeritySearchAPITemplates prior to version 3.6
of our software.

The ResultSet has the structure shown in the following example. A description
of each column follows the ResultSet structure.

@ResultSet SearchResultsTemplates

6

name

formtype

filename

outfilename

flexdata

description

template1-name

template1-formtype

template1-filename

template1-outfilename

template1-flexdata

template1-description

template2-name

template2-formtype

template2-filename

Programmer’s Reference Guide 8-7

Understanding Templates

template2-outfilename

template2-flexdata

template2-description

…

templaten-name

templaten-formtype

templaten-filename

templaten-outfilename

templaten-flexdata

templaten-description

@end

SearchResultTemplates Columns

A SearchResultTemplates ResultSet consists of six columns. Each column has
an associated function. These are the SearchResultTemplates columns:

• name

• formtype

• filename

• outfilename

• flexdata

• description

name

The name column is the unique name of the template. This is how the template
is referenced within the Web Layout Editor applet. When a result template is
referenced on a search form or query page, this is the name that is used.

formtype

The formtype column is the specific type of functionality the page is trying to
achieve. Only ResultsPage is currently supported. This form type identifies the
template as one that can be used to create query result pages using the Web
Layout Editor, Query Result Pages menu.

8-8 Programmer’s Reference Guide

Understanding Templates

filename

The filename column represents the path to the template file. This can be either
a relative path or an absolute path. A relative path is relative to the
templates.hda file.

If this template file is used to create a new search results template, the Web
Layout Editor will create a new template with this name in the <home>/shared/
config/templates/results/ directory and also create an entry in the ResultSet
CurrentVerityTemplates.

outfilename

The outfilename column value is always null. Since search is a function of the
Content Server, there is no search result template file that requires access. The
results of a search are communicated from search server to the Content Server
for final formatting and presentation to the web browser.

flexdata

The flexdata column contains information that is placed into the areas, Text1
and Text2, of a SearchResultTemplates file. The contents of Text1 and Text2
can be edited by accessing the Query Result Pages from the Web Layout Editor.

As items are place in the Text1 and Text2 areas, the Content Server converts the
entries into Idoc Script that can be understood by the Content Server. This
script, along with any additional markup you provide, is entered into the
flexdata column.

The format of text entered in the flexdata column is:

Text2 “text 2 contents”%<Tab>Text1 “text 1 contents”%

In this instance, <Tab> is a literal tab character. The default value for flexdata
for the only SearchResultTemplates template (search_results.htm) is:

Text2 <$dDocTitle$>%Text1 <$dDocName$>%

For any new SearchResultTemplates templates you define, the entries you
provide for flexdata in the definition of a new template will appear as the default
entries when a user adds a new Query Results page.

Programmer’s Reference Guide 8-9

Understanding Templates

description

The description column contains a description of the template. The software
may use this information to display the description of a selected template when
using the Administration Tools. This is an example of what the ResultSet
SearchResults looks like in the templates.hda file:

@ResultSet SearchResultTemplates

6

name

formtype

filename

outfilename

flexdata

description

StandardResults

SearchResultsPage

search_results.htm

null

Text2 <$dDocTitle$>%Text1 <$dDocName$>%

Page presenting results of a search using Verity Search API

@end

8-10 Programmer’s Reference Guide

Understanding Templates

Defining Custom Templates
When new templates are created, they are made available by creating a
ResultSet that describes them. The ResultSet name you create should be
assigned a unique name, such as MyTemplates. The structure of the ResultSet
must be identical to the IntradocTemplates ResultSet so that you can define a
MergeRule from the custom templates file, MyTemplates to IntradocTemplates.

The name you assign to your templates page depends on whether you are trying
to replace an existing template, or just augmenting the templates that come with
the product.

• To replace an existing template page, use the same name for your template.

• To add a template page that you will create a reference to in the
templates.hda file, use a new, unique name for your template.

The Content Server loads the page templates in a series of steps where each
following step may redefine a template loaded earlier or add a new one. A
template is an entry in a table that describes which HTML template file should
be loaded for the particular template.

Programmer’s Reference Guide 9-1

C h a p t e r

9
Chapter 9Understanding Content-Centered

Template Metadata

Overview
The manipulation of metadata is handled by the process of creating HTML
resource includes using the super tag to override default behavior. Within
specified parameters metadata manipulation can be performed for any of these
content-centered templates.

• checkin_new.htm

• checkin_sel.htm

• doc_info.htm

• update_docinfo.htm

• std_query.htm

9-2 Programmer’s Reference Guide

Understanding Content-Centered Template Metadata

Multi-Checkin Environment File
The multi_checkin_environment.cfg configuration file is part of the
MultiCheckIn component. This file is used to manipulate metadata fields on
content-centered template pages for certain content types. This configuration
file is an environment-type resource that provides information to the Content
Server concerning the interaction with various content-centered pages. The
configuration file, along with the HTML include resources, uses name/value
pairs to suppress, display, pre-fill, or make metadata fields read-only based on
the chosen content type.

Note: The std_page.htm file provides a list of universal resource includes that can be
used by any Content Server page and a list of resource includes for pages that have
flex areas (the two check in pages, the doc info page, and the search page). This file
is located in the <home>/shared/config/resources/ directory.

Multi-Checkin Menu Display

The UseMultiCheckinOnSidebar environment setting enables or disables a pull-
down menu on the portal. If the environment setting is disabled, the multi-
checkin menu will only be accessible on the Content Management form. The
multi-checkin menu display is defined in the multi_checkin_environment.cfg
file using this format:

UseMultiCheckinOnSidebar=true

• Setting to TRUE enables the pull-down menu on the portal.

• Setting to FALSE disables the pull-down menu on the portal.

Multi-Checkin Content Types

The MultiCheckinTypes setting defines the list of content types that have special
check in pages. Each content type must have a set of hidden and read-only
fields. The multi-check in content types are defined in the
multi_checkin_environment.cfg file using this format:

MultiCheckinTypes=ADACCT,ADCORP,ADENG,ADHR

The Configuration Manager applet enables you to create custom New Check In
pages for custom content types. To create custom New Check In pages you must
add the custom content type to the list and make an associated configuration
entry for that content type.

Programmer’s Reference Guide 9-3

Understanding Content-Centered Template Metadata

Custom metadata fields are prefixed with an x on Content Server HTML pages.
Each content type should define fields using this convention:

ContentTypeName_hide=xCustomMeta1, xCustomMeta2

ContentTypeName_checkin_readOnly=xCustomMeta3,xCustomMeta4

ContentTypeName_update_readOnly=xCustomMeta1, xCustomMeta2,
xCustomMeta3

ContentTypeName_xComments=This is the default comment for an
ADACCT field on the checkin page.

ContentTypeName_xCustomMeta3=This value will show on the checkin
page, but its uneditable.

These content types have associated special check-in pages:

• ADACCT

• ADCORP

• ADENG

• ADHR

9-4 Programmer’s Reference Guide

Understanding Content-Centered Template Metadata

For ADACCT, no metadata is hidden, no fields are read only, and the comment
field is pre-filled on check in.

ADACCT_hide=

ADACCT_checkin_readOnly=

ADACCT_update_readOnly=

ADACCT_xComments=This is the default comment for an ADACCT field.

Example Content Type ADACCT:

Programmer’s Reference Guide 9-5

Understanding Content-Centered Template Metadata

For ADCORP, no metadata is hidden, no fields are read only on check in, but on
the update page the Comments field will be read only. Also, the comment field
is pre-filled on check in with a default value.

ADCORP_hide=

ADCORP_checkin_readOnly=

ADCORP_update_readOnly=xComments

ADCORP_xComments=This is the default comment for an ADCORP field,
which cannot be changed on update.

Example Content Type ADCORP:

9-6 Programmer’s Reference Guide

Understanding Content-Centered Template Metadata

For ADENG, the Comments field is hidden entirely

ADENG_hide=xComments

ADENG_checkin_readOnly=

ADENG_update_readOnly=

Example Content Type ADENG:

Programmer’s Reference Guide 9-7

Understanding Content-Centered Template Metadata

For ADHR, the Comments field is read only always, and set to a default value.

ADHR_hide=

ADHR_checkin_readOnly=xComments

ADHR_update_readOnly=xComments

ADHR_xComments=This is the default, unchangable comment for an
ADHR field.

Content Type ADHR:

Programmer’s Reference Guide 10-1

C h a p t e r

10
Chapter 10Understanding Query and Service

Resources

Overview
There are two types of resources: query and service. These resources comprise
some of the main coding mechanisms that drive the software.

Query Resource
Queries are used with the product to manage information in the system
database. Queries are used in conjunction with service scripts to perform such
tasks as adding to, deleting and retrieving data in the Content Server database.

These are general guidelines for developing your own query:

• Define a new query in an HTM file. The file must include a table that is
identical in structure to the QueryTable table.

• Load the query by defining it in a ResourceDefinition ResultSet.

• Merge the table defining your query with the QueryTable table.

10-2 Programmer’s Reference Guide

Understanding Query and Service Resources

Query Definition Tables

A Query resource definition points to an HTM file. The HTM file defines a
table with a specific format for query definitions. To better understand the
definition, look at the Query resource definition that comes with the system
<home>/shared/config/resources/query.htm.

This HTM file contains two query tables:

• QueryTable

• QueryWebChangesTable

These HTM tables are delimited with a start tag <@table tablename@> and an
end tag <@end@>. The content of the table is held in an HTML table element.
The QueryWebChangesTable contains queries that are used to maintain the
HTML pages on a Content Server web site.

Query Definition Table Columns

Both QueryTable and QueryWebChangesTable consist of three columns. Each
column has an associated function. These are the three columns:

• name

• queryStr

• parameters

name

The name column contains a unique name for the query. To override a query,
you would use the same name for a query that you define. To add a new query,
use any other unique name. Normally, the first character of the query name
defines the query type:

Query Type Description

D delete query

I insert query

Q select query

U update query

Programmer’s Reference Guide 10-3

Understanding Query and Service Resources

queryStr

The queryStr column defines the query. This query is defined using SQL. If
there are any parameters, their place is held with a question mark (?) as an
escape character.

parameters

The parameters column describes the parameters that are passed to the query. A
query is called from a service and a service is called by a web browser. It is the
responsibility of the web browser to provide the values for each of the
parameters for the query. This can be done with a FORM element in the web
page. In the case of the DOC_INFO service, the parameter is provided in a
directory listing or query result page, as show in the following figure. The URL
for DOC_INFO is created with the dID parameter specified as part of the URL.

Database Tables

This table lists the database tables along with a brief description of each.

Table Name Description

Alias Provides a list of workflow aliases and their
descriptions.

AliasUser Provides a list that associates aliases with
users.

Config Provides a record of database changes. This
feature references the database list to
determine whether the database is
configured properly. If a change is needed,
the feature updates the database and records
the change in the Config table for future
reference.

Counters Provides centralized storage of sequence
numbers used by the application.

DocFormats Provides a list of formats and their
associated conversion methods and
descriptions.

10-4 Programmer’s Reference Guide

Understanding Query and Service Resources

DocMeta Provides a table containing the custom
DocInfo field values for each document.
This is updated by the system server when
content items are checked in, deleted, or
updated.

DocMetaDefinition Provides a list of the custom DocInfo fields
and their attributes.

DocTypes The service returns a list of the content item
types (.doc, .gif, etc.), their descriptions,
and their file name

DocumentAccounts Provides a list of accounts.

DocumentHistory Provides a journal of content item
transactions such as checkin, checkout,
delete, or update.

Documents Provides a list of content item files in the
system. Each file normally has two records:
one for the native file and one for the web
file.

ExtensionFormatMap Provides a list of extensions defined in the
system and the format each is mapped to.

OptionsList Provides a table of all option lists. Each list
has a common key value, option value, and
order.

ProjectDocuments Provides a table that stores information
about all content items associated with a
Content Publisher project.

ProblemReports Provides a table that contains problem
report information that is generated through
the workflow process.

Table Name Description

Programmer’s Reference Guide 10-5

Understanding Query and Service Resources

RegisteredProjects Provides a table that stores information
about any projects registered through
Content Publisher.

Revisions Provides a list of all content items in the
system. One record for each revision of
each document is provided including the
status of that revision and any required
metadata values.

RoleDefinition Provides a list of roles and their
permissions to each security group: one row
for each role of each security group.

SecurityGroups Provides a list of security groups and their
descriptions.

Subscription Provides a list of currently subscribed
content items.

Users Provides a list of all users registered in the
system with their primary attributes:
username, full name, password, e-mail
address, directory, old style role (when only
one role was given each user), type, and
password encoding.

UserSecurityAttributes Provides a list of users and their security
attributes. This is where the new account
and multiple role data for each user identity
are stored.

WorkflowAliases Provides a table used to associate user
aliases to workflow steps.

WorkflowCriteria Provides a list of workflow criteria used to
build the where clause in the query that
determines if a content item should follow a
particular workflow.

Table Name Description

10-6 Programmer’s Reference Guide

Understanding Query and Service Resources

WorkflowDocAttributes Provides an internal status table that stores
information about content items in active
workflows.

WorkflowDocuments Provides a list of all content items in
workflows. This is updated by the system
server to keep track of the status of content
items (state and step) that are in workflows.

Workflows Provides a list of workflows including their
description, security group, status, and type.

WorkflowStates Provides an internal status table that stores
information about content items in active
workflows.

WorkflowSteps Provides a list of workflow steps, including
step description, type, and number of
reviewers required to pass step.

Table Name Description

Programmer’s Reference Guide 10-7

Understanding Query and Service Resources

Example Query

This script is the QdocInfo query as it is defined in the file <home>/shared/
config/resources/query.htm. The queryStr is a SQL select statement that obtains
the necessary information to display about a file in the DOC_INFO template
page. This is the page that will be displayed when a user requests the
information page (the i icon) from the search results page.

<tr>

<td>QdocInfo</td>

<td>SELECT DocMeta.*, Documents.*, Revisions.*

FROM DocMeta, Documents, Revisions

WHERE DocMeta.dID = Revisions.dID AND
Revisions.dID=Documents.dID

AND Revisions.dID=? AND Revisions.dStatus<>’DELETED’ AND

Documents.dIsPrimary<>0

</td>

<td>dID int</td>

</tr>

Notice that this query joins the three tables (DocMeta, Revisions, and
Documents) on the dID field (content ID), which is also the parameter for this
query. This query also takes one argument, the dID (content ID). The dID
parameter is provided by the URL that requests the DOC_INFO service.

10-8 Programmer’s Reference Guide

Understanding Query and Service Resources

Service Resource
A service is a function performed by the system server on behalf of the web
browser (the client). For example, the standard query page is delivered to your
web browser as a service when a request is made to get the search form by
clicking Search link on the portal page. The URL for the page includes the
following information:

IdcService=GET_DOC_PAGE&Action=GetTemplatePage&Page=STANDARD_QUER
Y_PAGE

An IdcService placed in a URL indicates that a service is being requested from
the system server. A service provides a function for a web browser. However
services are functions that can be performed by the server on behalf of the entire
system and the system server is written so that it will use services when it needs
to perform a task.

A service is defined by a script. The script defines the name, attributes and
actions of the service. A service script is defined in an HTM file, but the service
is also dependent upon other resource definitions to perform its job. A service
needs a template, and most likely a query. The HTM file defines a table with a
specific format for a service definition.

The file <home>/config/shared/resources/std_services.htm provides a sample
of scripted services.

Important: Do not edit this file in a graphical browser in its graphical mode. Use a
text editor

These are the general steps needed to define a new service:

1. Define a service in an HTM file. The file must include a table that is
identical in structure to the StandardServices table.

2. Load the service by defining it in a ResourceDefinition ResultSet.

3. Merge the table defining the service with the StandardServices table.

Service Resource Structure

The structure of a service-type resource is defined by a three column table. The
table is delimited with a start tag <@table “tablename”@> and an end tag
<@end@>. The first column contains the service’s unique name. The second
column describes the attributes of the service. The third column describes the
actions that are performed by the service.

Programmer’s Reference Guide 10-9

Understanding Query and Service Resources

This example shows the HTML markup for a service entry in this table. This
describes a service with n actions:

<tr>

<td>service name</td>

<td>service type

access level

template page

sub-service

subjects notified

error message</td>

<td>type of action1:function name1:function parameters1:action
control mask1:error message1[
]

type of action2:function name2:function parameters2:action
control mask2:error message2[
]

…

type of actionn:function namen:function parametersn:action
control maskn:error messagen</td>

</tr>

The
 tag at the end of each action line is strictly for display purposes only
and is optional. However, the </td> must occur on the same line as the last
action.

Service Name

This column contains information about the unique name of the service.

<td>GET_DYNAMIC_PAGE</td>

The reference to a service called in a URL is the service name.For example, this
URL is calling the service named GET_DYNAMIC_PAGE:

/intradoc-cgi/idc_cgi_isapi.dll?IdcService=GET_DYNAMIC_PAGE&
PageName=index

10-10 Programmer’s Reference Guide

Understanding Query and Service Resources

Service Attributes

The service attribute column is composed of six distinct items. This example
shows the syntax of these items. Following the syntax is a description of each
attribute.

<td>service type

access level

template page

sub-service

subjects notified

error message</td>

Service Class

There are several types or class of services, and the class of service determines,
in part, what actions can be performed by the service. There are actions that all
services share, and there are actions that are quite specific to the service type.
These are the types of services currently available:

Service Class Description

Service The default service.

DocService Used for performing actions on content items,
for example: check in/out, content item
information, resubmit, etc.

FileService Used to retrieve files from the system, for
example: get copy.

MetaService Used to manage doc info fields.

PageHandlerService Used by Web Layout Editor to edit pages.

UserService Used to manage users, for example: add/edit/
delete users.

WorkflowService Used to manage workflows.

Programmer’s Reference Guide 10-11

Understanding Query and Service Resources

Access Level

Each service calls a global security check to determine if the logged in user has
permission to execute the service. The global security check is only relevant if
the service requires global privilege. The check validates if the user needs to be
part of the administration role or if only a given privilege is required (less than
ADMIN_PRIVILEGE) on at least one group.

The bit flags are combined with a logical AND to create an access level:

READ_PRIVILEGE = 1
WRITE_PRIVILEGE = 2
DELETE_PRIVILEGE = 4
ADMIN_PRIVILEGE = 8
GLOBAL_PRIVILEGE = 16

For example, to access the Administration page, the service requires the user to
be part of the administration role. Consequently, users need to have global
administration privileges and the service has the access level set to 24. If the
user wants to access the check in page, the user needs write privileges on at least
one group, and the access level of the security group is set to 18.

If no user is logged in and the service has access level with the
GLOBAL_PRIVILEGE flag set, a log on prompt is returned. This log on
prompt forces the user to log into the system before the product will perform the
service.

Template Page

The template page is used to communicate a successful request back to the web
browser. Information that the service gathers is merged with the template page.
Not all types of services require or even use a template page. For example, the
PageHandlerService, which is called from an applet, does not specify a template
page. The template page name is mapped to an HTML file using the
templates.hda file.

Sub-Service

The service may define a sub-service to execute, otherwise, the value null is
used. For example, the service ADD_WORKFLOWDOCUMENT executes the
sub-service ADD_WORKFLOWDOCUMENT_SUB. This sub-service is a
workflow related service that adds a revised content item to the workflow and
consists of these actions:

• Queries whether the content item workflow is locked.

10-12 Programmer’s Reference Guide

Understanding Query and Service Resources

• Inserts the workflow content item information in the database.

• Retrieves the workflow content item name from the database.

• Evaluates the revision status of the content item.

• Creates a new revision.

Subjects Notified
If a service changes one or more subjects, it must notify the affected subjects of
the changes. The subjects notified string is a comma-separated list of changed
subjects. For example, the ADD_USER service adds a new user to the system
and subsequently informs the system that the ‘users’ subject has changed.
Possible subjects are: accounts, aliases, collections, docformats, doctypes,
documents, dynamicqueries, metadata, metaoptlists, templates, and users. You
can think of subjects as subsystems within the product.

Each service by default will inform its requestor of changes to subjects.
Consequently, the PING_SERVER service, which has no action, is used by the
Administration applets to detect changes in the state of the server.

Error Message
The error message is returned by the service, if no action overrides it. Each
action can have an error message associated with it that would override the error
message provided as an attribute. If the action error message is not null, it
becomes the error message for the remainder of the actions in the service. If it is
null, the error message remains unchanged from the previous action. For
example, the error message defined as an attribute of CHECKIN_NEW_FORM
is “Unable to build check in form,” but on executing the second action it
becomes “Error retrieving option lists for custom fields.”

<tr>

<td>CHECKIN_NEW_FORM</td>

<td>DocService

18

CHECKIN_NEW_FORM

null

null

Unable to build check in form.</td>

<td>3:setLocalValues:isNew,1:0:null

Programmer’s Reference Guide 10-13

Understanding Query and Service Resources

3:loadMetaOptionsLists::0:Error retrieving option lists
for custom fields.

3:loadDocDefaults::0:null

3:loadDefaultInfo::0:null

3:loadMetaDefaults::0:null</td>

</tr>

Service Actions

The third column of a defined service are the service actions. Each service may
contain one or more actions, which determine what happens on execution. An
action is defined by the following syntax:

type of action:function name:function parameters:action control
mask:error message

An action consists of five parts, each part separated from the previous part by a
colon. If there is no entry for a part, then the part is left empty. In such a case,
you will find successive colons.

Type of Action

An action can be used to execute an SQL statement, perform a query, run code,
cache the results of a query, and load an option list. These are the possible types
of actions:

Action Type Action Function

QUERY_TYPE = 1 For QUERY_TYPE, the function must be a
“select” query.

EXECUTE_TYPE = 2 For EXECUTE_TYPE, the function
specifies a query that performs an action on
the database.

CODE_TYPE = 3 For CODE_TYPE, the function specifies a
code module that is a part of the Java class
implementing the service.

10-14 Programmer’s Reference Guide

Understanding Query and Service Resources

Note: The difference between QUERY_TYPE and CACHE_RESULT_TYPE is that
in the first case the query is immediately discarded.

Function Name

The function name determines which query or Java function is used to perform
the action. The function name is restricted by the type of service and the type of
action.

Function Parameters

The parameters that are used by the functions are comma-separated. In the case
of QUERY_TYPE and CACHE_RESULT_TYPE, the first parameter will be
the name the action assigns to the ResultSet returned from the query. This
ResultSet can then be referenced in the template page. For OPTION_TYPE, the
parameters are optional. However, if they are given, they are used as follows:
the first parameter is the key under which the option list is loaded; the second
parameter is the selected value for display on an HTML page.

The control mask is especially useful in controlling the results from queries to
the database. Possible bit values and their meanings are shown in the following
table. These values can be logically combined using AND. For example, a
database query that checks to make sure that a content item does not exist, and
also starts a database transaction to add a new content item would have a control
mask value of 20 (16 + 4).

OPTION_TYPE = 4 For OPTION_TYPE, the function refers to
an option list stored in the system.

CACHE_RESULT_TYPE = 5 For CACHE_RESULT_TYPE, the function
is as in QUERY_TYPE, but here the results
returned by the query are stored for later use.

Action Type Action Function

Control Mask Description

CONTROL_IGNORE_ERROR = 1 Do not abort the service on error.

CONTROL_MUST_EXIST = 2 At least one record must be returned
by the query.

CONTROL_BEGIN_TRAN = 4 Starts a database transaction.

Programmer’s Reference Guide 10-15

Understanding Query and Service Resources

Note: CONTROL_MUST_EXIST and CONTROL_MUST_NOT_EXIST are used
only for QUERY_TYPE and CACHE_RESULT_TYPE.

CONTROL_COMMIT_TRAN = 8 Concludes a database transaction.

CONTROL_MUST_NOT_EXIST = 16 Query must not return any rows.

Control Mask Description

10-16 Programmer’s Reference Guide

Understanding Query and Service Resources

Example Service

The DOC_INFO service provides a good example of how queries and services
are related. The DOC_INFO service definition from the <home>/config/
resources/std_services.htm file is shown:

<tr>

<td>DOC_INFO</td>

<td>DocService

1

DOC_INFO

null

null

Unable to retrieve information about the revision.</td>

<td>5:QdocInfo:DOC_INFO:2: This document no longer exists.

3:checkSecurity:DOC_INFO:0:Unable to retrieve information
for ’’{dDocName}’’.

3:getDocFormats:QdocFormats:0:null

3:getURLAbsolute::0:null

3:getUserMailAddress:dDocAuthor,AuthorAddress:0:null

3:getUserMailAddress:dCheckoutUser,CheckoutUserAddress:0:null

3:getWorkflowInfo:WF_INFO:0:null

3:getDocSubscriptionInfo:QisSubscribed:0:null

5:QrevHistory:REVISION_HISTORY:0: Unable to retrieve
revision history for ’’{dDocName}’’.
</td>

</tr>

Programmer’s Reference Guide 10-17

Understanding Query and Service Resources

This table summarizes the attributes of the DOC_INFO service.

The template page for the DOC_INFO service is the DOC_INFO template. It is
important to know what is happening between the files so that you can
understand the interactions between the template page and the actions
performed in a service.

The definition for the content that the doc_info.htm template contains is located
in the <home>/shared/config/resources/std_page.htm file. Code from both files
appear in the following markup section:

Attribute Value

Service Type DocService

This service is providing information about a
content item.

Access Level 1

The user requesting the service must have read
privilege on the content item.

Template Page DOC_INFO

This service uses the DOC_INFO template
(doc_info.htm file).

Sub-Service null

This service does not define a sub-service to
execute.

Subjects Notified null

No subjects are affected by this service.

Error Message Unable to retrieve information about the
revision.

10-18 Programmer’s Reference Guide

Understanding Query and Service Resources

Markup from the <home>/shared/config/templates/doc_info.htm file:

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">

<html>

<head>

<$include std_info_html_head_declarations$>

</head>

<$include info_body_def$>

<$include info_page_content$>

</body>

</html>

Markup from the <home>/shared/config/resources/std_page.htm file that
defines what will appear in the doc_info.htm template:

<@dynamichtml info_page_content@>

<$include std_page_begin$>

<$include std_header$>

…

<!-- Do a loop on DOC_INFO so that all substitution tags
will use DOC_INFO as their first place to find their values.
Otherwise their is confusion between this result set and the
REVISION_HISTORY table that comes later. For example
'dStatus' is a value in both tables-->

<$loop DOC_INFO$>

<$if AllowPrimaryMetaFile and isTrue(AllowPrimaryMetaFile)
and

isTrue(dFormat like "*idcmeta*")$>

<$showPrimaryMetaFileFields = "1"$>

<$endif$>

<$include doc_info_notify_data$>

<table border=0 cellpadding=2 cellspacing=0
width=<$docInfoWidth-30$>>

<caption align=top><h4 class=pageTitle><$pageTitle$></
caption>

Programmer’s Reference Guide 10-19

Understanding Query and Service Resources

<$include special_checkin_fields1$>

<$include std_revision_label_field$>

<$include std_document_type_field$>

<$include std_document_title_field$>

<$include author_checkin_field$>

<$include std_meta_fields$>

<$include security_checkin_fields$>

<$include checkout_author_info_field$>

<$if IsStagingDoc$>

<$include doc_date_fields$>

<$endif$>

<$fieldName = "dStatus", fieldCaption = "Status"$><$include
std_displayonly_field$>

<$if HasOriginal$>

<$fieldName = "dDocFormats", fieldCaption =
"Formats"$><$include std_display_field$>

<$endif$>

<$include workflow_list_for_doc$>

<$if HasUrl$>

<$include doc_url_field$>

<$endif$>

<$if HasOriginal and not ClientControlled and not
showPrimaryMetaFileFields$>

<$fieldName = "dOriginalName", fieldCaption = "Get Native
File"$>

<$if DownloadApplet$>

<$valueStyle="xxsmall", fieldValue =
strTrimWs(inc("download_file_by_applet_form_content"))$>

<$else$>

<$fieldValue = strTrimWs(inc("doc_file_get_copy"))$>

<$endif$>

<$if DownloadApplet$><form name=downloadForm><$endif$>

10-20 Programmer’s Reference Guide

Understanding Query and Service Resources

<$include std_displayonly_field$>

<$if DownloadApplet$></form><$endif$>

<$endif$>

<$if IsFailedConversion or IsFailedIndex or
IsDocRefinePassthru$>

<$if IsFailedConversion$><$include
std_namevalue_separator$><$endif$>

<tr>

<td align=right>

<$if IsFailedIndex$>Index Error:

<$else$>Conversion Error:

<$endif$></td>

<td>

<table>

<tr>

<td>

<$dMessage$>

<$if IsFailedIndex$>

Content has been indexed with Info only.

Resubmit should only be performed if the problem has
been resolved.

<$elseif IsDocRefinePassthru$>

Content Refinery failed to convert the content
item but released it to the

web by copying the native file.

<$endif$></td>

<td><form action="<$HttpCgiPath$>" method="POST">

<input type=hidden name=dID value="<dID>">

<input type=hidden name=dDocName
value="<$dDocName$>">

<input type=hidden name=IdcService
value="RESUBMIT_FOR_CONVERSION">

<input type=submit value=" Resubmit ">

Programmer’s Reference Guide 10-21

Understanding Query and Service Resources

<$if ClientControlled$>

<input type=hidden name=ClientControlled
value="DocMan">

<$endif$>

</form></td>

</tr>

</table>

</td>

</tr>

<$if IsFailedConversion$><$include
std_namevalue_separator$><$endif$>

<$endif$>

</table>

<$if IsNotSyncRev$>

<table width="100%">

<tr>

<td align=center>The local
copy of this content item has

not been updated to the latest revision. Use <i>Get
Native File</i> or <i>Check out</i>

to update your local copy of <i><$dDocName$></i>.</
span></td>

</tr>

</table>

<$endif$>

<$if IsStagingDoc$>

<table width="90%">

<tr>

<td width="20%" align=center><$include
doc_problem_reports$></td>

10-22 Programmer’s Reference Guide

Understanding Query and Service Resources

<td width="20%" align=center><$include
project_problem_reports$></td>

</tr>

</table>

<$include doc_provider_info$>

<$else$>

<table width="90%">

<tr>

<$if ClientControlled$>

<td width="20%" align=center><$include
doc_select_actions$></td>

<$else$>

<td width="20%" align=center><$include
doc_file_undo_checkout$></td>

<td width="20%" align=center><$include
doc_file_checkout$></td>

<td width="20%" align=center><$if
showPrimaryMetaFileFields$><$include meta_file_update$>

<$else$><$include doc_file_update$><$endif$></td>

<$endif$>

<td width="20%" align=left><$include
doc_subscription_unsubscription$></td>

<$if ClientControlled$>

<td width="20%"></td>

<td width="20%"></td>

<$endif$>

</tr>

</table>

<$endif$>

<$if HasOriginal and DownloadApplet$>

<$include download_native_applet$>

<$endif$>

Programmer’s Reference Guide 10-23

Understanding Query and Service Resources

<!-- end loop on DOC_INFO-->

<$endloop$>

<$if IsStagingDoc$>

<!-- present a problem report form -->

<$include doc_add_problem_report$>

<$else$>

<!-- Table holding information about all revisions of this
document-->

<$include doc_rev_table$>

<$endif$>

</td>

</tr>

</table>

<$include std_page_end$>

<@end@>

10-24 Programmer’s Reference Guide

Understanding Query and Service Resources

A service can have one or more service actions associated with it. In the case of
the DOC_INFO service, the service consists of ten actions:

Attribute Value

1 Cached query action that retrieves information
from the database using a query.

This action retrieves content item information.
The result of this query is assigned to the
parameter DOC_INFO and stored for later use.

The control mask setting specifies that the
query must return a record or the action fails
with the given error message. The action
throws a data exception if the content item no
longer exists and returns an error message.

This content item no longer exists

2 Code action specifying a code module that is a
part of the Java class implementing the service.

This action retrieves the data assigned to the
parameter DOC_INFO and maps the result set
values for dStatus and dDocTitle.

3 Code action specifying a code module that is a
part of the Java class implementing the service.

This action retrieves the data assigned to the
parameter DOC_INFO and evaluates the
assigned security level to verify that the user is
authorized to perform this action. If the user
fails the security check a message is returned.

Unable to retrieve information for
''{dDocName}.”

Programmer’s Reference Guide 10-25

Understanding Query and Service Resources

4 Code action specifying a code module that is a
part of the Java class implementing the service.

This action retrieves the file formats for the
content item. The action passes QdocFormats
as a parameter (defined in <home>/config/
resources/query.htm). The file formats are
passed to the Formats: entry of the DOC_INFO
template.

5 Code action specifying a code module that is a
part of the Java class implementing the service.

This action resolves the URL of the content
item. The URL is passed to the Web Location:
entry of the DOC_INFO template.

6 Code action specifying a code module that is a
part of the Java class implementing the service.

This action resolves the e-mail address of the
content item author and the user who has
checked out the content item. The action passes
dDocAuthor and AuthorAddress as parameters.

7 Code action specifying a code module that is a
part of the Java class implementing the service.

This action resolves the email address of the
content item author and the user who has
checked out the content item. The action passes
dCheckoutUser and CheckoutUserAddress as
parameters.

Attribute Value

10-26 Programmer’s Reference Guide

Understanding Query and Service Resources

8 Code action specifying a code module that is a
part of the Java class implementing the service.

This action evaluates whether the content item
is part of a workflow. The action passes
WF_INFO as a parameter. The DOC_INFO
template is referenced and if WF_INFO exists
then workflow information is included in the
DOC_INFO template.

8 Code action specifying a code module that is a
part of the Java class implementing the service.

This action evaluates whether the current user
has subscribed to the content item and modifies
the DOC_INFO page. If the current user is
subscribed, an Unsubscribe button is
displayed. If the user is not subscribed, a
Subscribe button is displayed. The action
passes QisSubscribed as a parameter (defined
in <home>/config/resources/query.htm).

10 Cached query action that retrieves information
from the database using a query.

This action retrieves revision history
information. The result of this query is assigned
to the parameter REVISION_HISTORY. The
DOC_INFO template uses
REVISION_HISTORY in a loop to present
information about each revision in the
DOC_INFO page. If the action fails, this error
message is displayed:

Unable to retrieve revision history for
’’{dDocName}.’’

Attribute Value

Programmer’s Reference Guide 11-1

C h a p t e r

11
Chapter 11Understanding the MultiCheckin

Component

Overview
This section discusses the MultiCheckin component and analyzes the
functionality of each file within the component. After implementing the
MultiCheckin component you must log into the Content Server and click the
Configuration Manager link.

After implementation, the Configuration Manager screen displays a drop-down
list. Also, other changes will be noticed after selecting a specific file type. For
example, the difference between choosing the content type ADACCT versus the
content type ADENG is compared:

11-2 Programmer’s Reference Guide

Understanding the MultiCheckin Component

Example Content Type ADACCT:

Programmer’s Reference Guide 11-3

Understanding the MultiCheckin Component

Example Content Type ADENG:

11-4 Programmer’s Reference Guide

Understanding the MultiCheckin Component

Component Description
One of the more popular customizations performed is to have metadata
displayed or suppressed on the check in screen, depending upon the content type
selected. This particular component focuses on metadata fields that appear on
the Content Server by default.

Accordingly, you may have different content metadata and you will need to
modify the environment file, multi_checkin_environment.cfg to achieve your
desired results.

The MultiCheckin component contains the following files:

• MultiCheckinManifest.zip

• manifest.hda

• components/doc_man.htm

• components/multi_checkin.hda

• components/multi_checkin_environment.cfg

• components/multi_checkin_resource.htm

• components/multi_checkin_templates.hda

• readme.txt

MultiCheckinManifest.zip

The MultiCheckinManifest.zip is the zipped file containing all of the files that
are part of the component. The Component Manager portion of the Content
Admin Server adds the ability for a properly zipped component file to be
automatically uploaded and installed with the Content Admin Server
application.

Programmer’s Reference Guide 11-5

Understanding the MultiCheckin Component

manifest.hda

The manifest.hda file is at the heart of the Component Manager. This file is used
by the Component Manager feature of the Content Admin Server to easily
upload and enable custom components without complicated installation
procedures, customized installation CDs or installation logic of third party
products. The purpose of the manifest.hda is to move individual files that are
located within a properly zipped component file into the correct Content Server
directories. For example, image files will be moved into the <home>/
weblayout/images directory/. However, this does not update the database.

For a component to be installed, removed, or unpackaged, the user must have a
properly formatted manifest.hda file. Although simple to create, if the file is
improperly formatted, the Component Manager will not execute.

Typically, the manifest.hda file is encapsulated in the zip file along with all files
to be installed. The only valid name for this file is manifest.hda. It must be on a
top level of the zip file directory structure and must contain at least one result
set using this format:

@ResultSet Manifest

2

entryType

location

@end

This must be on a top level of the zip file directory structure and must contain at
least one ResultSet with entryType and location entries.

The entryType entry must be one of the following:

Entry Description

common Files to be placed in <weblayout>/common/

images Files to be placed in <weblayout>/images/

help Files to be placed in <weblayout>/images/

component A component to be placed by default into
<home>/custom/…

11-6 Programmer’s Reference Guide

Understanding the MultiCheckin Component

Note: There are certain restrictions on installing a new class file. This installer is not
intended as a patch utility for the Content Server, therefore it will not allow
placement of Java class files into the <home>/classes/intradoc/ directory, nor will it
place single files onto the <home>/classes/ directory. Class files must first be
packaged into directories and then can be placed into the <home>/classes directory.

The location entry indicates both the file’s location in the zip file, and its
installed location. For example, directing the manifest.hda file to the location c:/
<home>/custom would not allow a component to be installed on a server where
the Content Server resides in the d:/ directory. Accordingly, a relative path
should be used. It is the responsibility of the individual creating the component
to ensure that full path names are used as rarely as possible. This will help
ensure that many different Content Server users can share the packaged
component.

Example Manifest

This is an example of a manifest.hda file for a component:

@ResultSet Manifest

2

entryType

location

component

MyComponent/MyComponent.hda

componentExtra

MyComponent/readme.txt

images

MyComponent/

@end

classes A class file to be placed in <home>/classes/
with certain restrictions

componentextra A file associated with a component, such as a
readme.txt file, or other documentation.

Entry Description

Programmer’s Reference Guide 11-7

Understanding the MultiCheckin Component

This is an example of the accompanying .zip file structure:

manifest.hda

component/MyComponent/MyComponent.hda

component/MyComponent/my_component_std_page.htm

component/MyComponent/my_component_resources.htm

component/MyComponent/readme.txt

images/MyComponent/image1.jpg

images/MyComponent/image2.jpg

The example defines these actions:

• The component MyComponent.hda and all files referenced by that
component are installed into the directory: <home>/custom/MyComponent/.

• The readme.txt will also be placed in this directory.

• The images in the folder MyComponent/ are installed into the directory
<weblayout>/images/MyComponent/.

• An entryType of common, help, or class works in a similar fashion to images.

components/doc_man.htm

This file serves as one of the template files that will be implemented by the
Content Server and is the template file referenced in the
multi_checkin_template.hda. This will be implemented through the MergeRules
set in the multi_checkin.hda file.

These are some of the contents of the components/doc_man.htm file:

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html;
charset=iso-8859-1">

<meta name="GENERATOR" content="Intra.doc! 4.0">

<title>Content Management</title>

<$include std_html_head_declarations$>

</head>

11-8 Programmer’s Reference Guide

Understanding the MultiCheckin Component

<$include body_def$>

<$include std_page_begin$>

<$include std_header$>

<table border="0" cellpadding="2" cellspacing="2" width="450">

<tr>

<td colspan=4 <$if not
isNavOnSideBar$>align="center"<$endif$>>

<h3 class=pageTitle>Content Management</h3>

</td>

</tr>

<td width="30"> </td>

<td>

<a href="<$HttpCgiPath$>?IdcService=CHECKIN_NEW_FORM">

<img src="<$HttpImagesRoot$><$docman_checkinnew_image$>"

align="middle" border="0" <$if conmgr_btn_size$>

width=<$conmgr_btn_size$>
height=<$conmgr_btn_size$><$endif$>>

</td>

<td>

<a href="<$HttpCgiPath$>?IdcService=CHECKIN_NEW_FORM"

class=largeTableEntry>New Check In

</td>

<$include content_type_checkin_form_table_cell$>

</tr>

Programmer’s Reference Guide 11-9

Understanding the MultiCheckin Component

components/multi_checkin_resource.htm

The components/multi_checkin_resource.htm file is a template file that contains
the code that allows the user to choose the content type at check in time. The
type of content chosen determines the metadata fields that will be displayed on
the page.

This is an example of the script from the multi_checkin_resource.htm file:

<html>

<head>

<title>Resources for multi checkin component</title>

</head>

<body>

<p align=center>MultiCheckin resources</p>

<!-- altered to upload the document type environment data any
time the document types are shown on a page-->

<@dynamichtml std_document_type_field@>

<$include super.std_document_type_field$>

<$hiddenFields = getValue("#active", #active.dDocType &
"_hide")$>

<$checkinReadOnly = getValue("#active", #active.dDocType &
"_checkin_readOnly")$>

<$updateReadOnly = getValue("#active", #active.dDocType &
"_update_readOnly")$>

<@end@>

<!-- set the hidden and read only flags, and the default value --
>

<@dynamichtml compute_std_field_overrides@>

<$include super.compute_std_field_overrides$>

11-10 Programmer’s Reference Guide

Understanding the MultiCheckin Component

<$if strIndexOf(#active.hiddenFields, #active.fieldName) >= 0$>
<$isFieldHidden=1$> <$endif$>

<$if #active.isCheckin and strIndexOf(#active.checkinReadOnly,
#active.fieldName) >= 0$> <$isFieldInfoOnly=1$> <$endif$>

<$if #active.isUpdate and strIndexOf(#active.updateReadOnly,
#active.fieldName) >= 0$> <$isFieldInfoOnly=1$> <$endif$>

<$dynamicFieldValue = getValue("#active", #active.dDocType & "_"
& fieldName)$>

<$if dynamicFieldValue and isCheckin$> <$fieldValue =
dynamicFieldValue$> <$endif$>

<@end@>

<!-- this form will allow the user to obtain a check in page for
content

 with the specified type -->

<@dynamichtml content_type_checkin_form_table_cell@>

<form name=checkinNewGoForm method=get action="<$HttpCgiPath$>">

<td colspan=2>

<input type=hidden name=IdcService value="CHECKIN_NEW_FORM">

<select name=dDocType>

<$docTypesList = #active.MultiCheckinTypes & ","$>

<$index = strIndexOf(docTypesList, ",")$>

<$loopwhile not strEquals(index, "-1")$>

<$currentDocType = strSubstring(docTypesList, 0, index)$>

<$docTypesList = strSubstring(docTypesList, index + 1)$>

<$index = strIndexOf(docTypesList, ",")$>

<option value="<$currentDocType$>" <$if
strEquals(#active.dDocType,
currentDocType)$>SELECTED<$endif$>><$currentDocType$>

<$endloop$>

</select>

<input type=submit value=" GO ">

</td>

Programmer’s Reference Guide 11-11

Understanding the MultiCheckin Component

</form>

<@end@>

<!-- this include is overridden to enable the checkin pull-down
menu on the side navigation bar, along with the "Check in new"
link. Look for the tag "MultiCheckin component changes" below
-->

…

components/multi_checkin.hda

The components/multi_checkin.hda file is the file that references your
components. The purpose of a file of this type is to direct the Content Server to
any custom defined resources.

This is the contents of the multi_checkin.hda file:

@Properties LocalData

ComponentName=MultiCheckin

@end

@ResultSet ResourceDefinition

4

type

filename

tables

loadOrder

resource

multi_checkin_resource.htm

null

1

template

multi_checkin_templates.hda

null

1

11-12 Programmer’s Reference Guide

Understanding the MultiCheckin Component

environment

multi_checkin_environment.cfg

Null

1

@end

@ResultSet MergeRules

3

fromTable

toTable

column

MultiCheckinTemplates

IntradocTemplates

name

@end

components/multi_checkin_environment.cfg

This file is used to display, hide, or manipulate metadata for the new content
checkin pages of the Content Server. This script determines how the metadata
fields for each content type selected is presented. This type of metadata
manipulation can be performed for any of the content-centered templates
(checkin_new.htm, checkin_sel.htm, doc_info.htm, update_docinfo.htm, and
std_query.htm) using different parameters.

All configurations of this nature can be handled in an environment-type
resource file. Each content type has a list of hidden fields, read-only fields and
default checking values for any of the fields. Changes require you to restart the
Content Server.

Programmer’s Reference Guide 11-13

Understanding the MultiCheckin Component

This is a portion of the script from the multi_checkin_environment.cfg file:

UseMultiCheckinOnSidebar=true

MultiCheckinTypes=ADACCT,ADCORP,ADENG,ADHR

ADACCT_hide=

ADACCT_checkin_readOnly=

ADACCT_update_readOnly=

ADACCT_xComments=This is the default comment for an ADACCT field.

ADCORP_hide=

ADCORP_checkin_readOnly=

ADCORP_update_readOnly=xComments

ADCORP_xComments=This is the default comment for an ADCORP field,
which cannot be changed on update.

ADENG_hide=xComments

ADENG_checkin_readOnly=

ADENG_update_readOnly=

ADHR_hide=

ADHR_checkin_readOnly=xComments

ADHR_update_readOnly=xComments

ADHR_xComments=This is the default, unchangable comment for an
ADHR field.

11-14 Programmer’s Reference Guide

Understanding the MultiCheckin Component

components/multi_checkin_templates.hda

To implement a template change, a MergeRule must be posted in the
multicheckin.hda file. This will be in the form of merging from the ResultSet
MultiCheckinTemplates into the default ResultSet IntradocTemplates using the
column name. The name will refer to the template page name entry,
DOC_MANAGEMENT_LINKS.

This is the script from the multi_checkin_templates.hda file:

@ResultSet MultiCheckinTemplates

5

name

class

formtype

filename

description

DOC_MANAGEMENT_LINKS

DocManagement

DocManagementLinks

doc_man.htm

Page containing links to various document management functions

@end

readme.txt

The readme.txt file documents the purpose of this component and directions for
installing it both manually and with the Component Wizard and Component
Manager tools.

Programmer’s Reference Guide 12-1

C h a p t e r

12
Chapter 12Understanding Workflows and

Workflow Branching

Overview
Workflows are useful in the process of reviewing and approving content before
it is released and published to the website. They specify how content is routed
and who needs to review and approve it.

Workflows are defined and managed using Workflow Admin, which is one of
the tools accessed from the Administration page. Only persons with
administrator or sub-administrator privileges can create workflows. Defined
workflows can be turned on and off. This means that workflows can be
temporarily disabled, if required.

Note: The Content Management page contain a link called Active Workflows,
which displays all workflows that are currently enabled.

Note: The User Profile page contains a link called Workflows in Queue for [user],
which displays a list of content items that the user needs to review.

A branching workflow allows a content item, or revision, to move from
workflow step to another workflow step based on a set of criteria and evaluated
Idoc Script. This can be used to allow revisions to share a common workflow
entry point, but then diverge depending on who the original author is, who is
currently working on the revision, and other revision metadata.

12-2 Programmer’s Reference Guide

Understanding Workflows and Workflow Branching

A workflow branch is initiated through the occurrence of an event and the
evaluation of Idoc Script. Idoc Script has been enhanced with some very
particular workflow functions. These functions allow the designer of the
workflow to maintain extra revision state information and perform activities
such as extra notifications. As a consequence, the system now maintains a state
file for each workflow revision.

Note: Refer to the Custom Scripting Reference Guide for information on Workflow
Script Functions, Workflow Step Event Scripts, and Workflow Script Variables.

Workflow Types

There are three types of workflows: basic, criteria, and sub-workflow. A
workflow becomes active in a system once is it enabled. All workflows are
bound to a security group. This means that any content item that belongs to a
workflow must be in that workflow security group on entry.

Basic Workflows

Basic workflows are workflows in which content is specifically assigned to the
workflow. This type of workflow requires someone to initiate the process. The
administrator or a sub-administrator selects one or more specific files for entry
into the workflow (using Content IDs), and defines the workflow steps and the
reviewers for each step.

Basic workflows consist of at least one named content item and an initial
contribution step with defined users. Optionally, it consists of multiple reviewer
and reviewer/contribution steps.

• When a basic workflow is enabled, initial revisions are created for the related
content items and the contributors are notified that the workflow is active.

• When a basic workflow is disabled, the revisions for these content items are
deleted from the system.

Criteria Workflows

Criteria workflows are workflows in which any content matching predefined
criteria enters the workflow automatically upon check-in. The administrator or a
sub-administrator selects the entry criteria for the workflow, consisting of a
security group and a value for one content information (metadata) field, and
defines the workflow steps and the reviewers for each step.

Programmer’s Reference Guide 12-3

Understanding Workflows and Workflow Branching

For example, if strategic reports must always be reviewed and approved by key
individuals before being released, a criteria workflow could be set up for this
content type and security group. If a strategic report is then checked into
Stellent, a workflow is automatically initiated to start the approval process.

Criteria workflows consist of an auto-contribution step and at least one reviewer
or reviewer/contributor step. A workflow enters a criteria workflow by
satisfying a metadata criteria during check in.

• When a criteria workflow is enabled, it becomes available to the system
during an initial check in. At that time, the metadata for the revision is
evaluated against all active criteria workflow (for workflows in the same
security group as the revision). A revision could match several criteria
workflows, but it may only enter into one workflow.

• When a criteria workflow is disabled, all revisions in the workflow are
moved out of the workflow state. Unlike the basic workflow, the revisions
are not deleted.

Sub-Workflows

A sub-workflow is a workflow that does not have an initial contribution step.
Sub-workflows are useful for splitting large, complex workflows into
manageable pieces. A file can enter a sub-workflow only through a jump from a
criteria workflow.

The Sub-workflow type is related to the criteria workflow. However, the sub-
workflow does not have the initial contribution step. A revision can only enter a
sub-workflow through a jump. A sub-workflow can become a criteria workflow
by defining a criteria and vice-versa.

Workflow Steps

A workflow consists of one or more steps, and multiple users can be assigned to
review the content at each step. There are four types of steps:

• A contribution step is the initial step of a basic workflow. Contributors are
defined when the workflow is created.

• An auto-contribution step is the initial step of a criteria workflow. There
are no predefined users involved in this step.

• In a reviewer step, the assigned users can only approve or reject the file.
Editing is not allowed.

• In a reviewer/contributor step, users can edit the file, if necessary, and then
approve or reject it.

12-4 Programmer’s Reference Guide

Understanding Workflows and Workflow Branching

If there is more than one user assigned to a step, it is possible to specify how
many of them need to approve the content before it moves to the next step.

All persons involved in a workflow are notified about any actions they need to
perform for each step. This is done entirely through e-mail. E-mail messages
can also be sent to content authors and other users to inform them of the status
of the workflow.

Each step has three events: entry, update and exit. Each event consists of a script
that is evaluated at a well-defined time. The events have an effect on the
workflow only if a script has been defined for it.

On entering a step, the entry script is evaluated. This event script consists of a
standard default script plus potentially a user defined script. The default script
computes the number of times this step has been entered and the last time the
step has been entered.

The update event initiates:

• During a timed update cycle.

• Upon update of the revision's metadata.

• After an approval or check in.

The exit event script is evaluated when a revision has completed the step
requirements.

Jumps
Jumps enable you to customize workflows for your system, your content, and
your users. Jumps are created using Idoc Script, which is Stellent’s proprietary
scripting language.

Typical uses of jumps include:

• Specifying more than one metadata field as the criteria for entering a
workflow.

• Taking action on content automatically after a certain amount of time has
passed.

• Defining different paths for files to move through the same workflow
depending on metadata and user criteria.

Note: Refer to “Workflow Step Event Scripts” in the Custom Scripting Reference
Guide for additional information.

Programmer’s Reference Guide 12-5

Understanding Workflows and Workflow Branching

Tokens
A token is a piece of Idoc Script that defines variable users in a workflow.
Tokens can be used for any of the following:

• Specify a variable user, such as the original author or the author’s
supervisor.

• Include users and aliases in workflow jumps.

• Define users through conditional statements.

Note: Refer to “Workflow Script Functions” in the Custom Scripting Reference
Guide for additional information.

12-6 Programmer’s Reference Guide

Understanding Workflows and Workflow Branching

Workflow and Script Templates

Workflow Templates

Workflow templates are a quick way to reuse workflows that you have already
created. Each workflow template is an outline for a basic workflow, criteria
workflow, or sub-workflow that is stored in the Workflow Admin tool. A
workflow template is not tied to a security group, and it cannot include jumps.

For example, if the first and last step of several workflows need to be the same,
you could save these steps as a workflow template, and then use the template as
the starting point for creating the individual workflows.

Script Templates

Script templates are a quick way to reuse jumps that you have already created.
Each script template is a piece of Idoc Script stored in the Workflow Admin
tool.

For example, if you have several workflow steps that require approval within
one week, you could save the jump script for this as a template, and then reuse
it.

Programmer’s Reference Guide 12-7

Understanding Workflows and Workflow Branching

Workflow Branching
A step event may move a revision from one workflow step to another workflow
step. Depending on the type of workflow, a revision may jump backwards and
forwards in the same workflow or into the step of a completely different
workflow. The system keeps careful track of the history of where a revision has
been, what jumps have been performed, entry counts and entry times and any
custom information that the designer of the workflow has chosen to maintain.

The flow consists of these basic steps:

• Evaluating the script.

• Actions performed on the Last Step.

• Actions performed on Restart.

• Actions performed on Exit.

• Actions performed on Error.

• Actions Performed on Reject.

• Executing the script.

Evaluating the Script

1. Execute the update script.

2. Determine if the step has been completed.

3. If the step is finished, evaluate the exit script.

4. If the exit script moves us to another step:

a. Inform users of step that revision has entered step.

b. Evaluate the entry script for this step.

c. If this takes us to a new step, keep track of where we have been and
repeat.

d. If this specifies an exit, determine the exit step and repeat.

e. Determine if the step is finished. This could be a notification step,
which is automatically finished, or it could be one requiring one or
more reviewers.

f. If the step is finished, go to Actions Performed On Restart.

12-8 Programmer’s Reference Guide

Understanding Workflows and Workflow Branching

Actions Performed on the Last Step

1. Determine if the step has been completed.

2. Unwind the stack of parents looking for jump steps.

3. For each jump step, determine if there is a return point. Stop once you have
found a return point.

4. If there is a return point, go to the return point and evaluate the entry script
and perform the actions in Evaluating the Script, step 4.

5. If there is no return point, exit the workflow.

Actions Performed on Restart

1. After the execution of a script, determine if this is a restart.

2. If this is a restart of a step, evaluate the entry script and perform the actions
in Evaluating the Script, step 4.

Actions Performed on Exit

If the script specifies that the revision is to exit the workflow, go to Actions
Performed on the Last Step, step 2.

Actions Performed on Error

If for any reason an error occurs in evaluating the script, ignore the script.
However, if the script evaluated correctly and for example, the target step is
invalid, fall into the exit scenario. See Executing the Script.

Note: A jump can specify its return point as a side effect. It however is not required
to define a return point. Consequently, on error you may go back to a return point
defined by another jump and not the jump you originally came from. If there are no
return points, exit the workflow.

Actions Performed on Reject

Search through the stack of parents for a step that allows contribution. The first
contribution step that is found is the target for the reject.

Programmer’s Reference Guide 12-9

Understanding Workflows and Workflow Branching

Executing the Script

1. Evaluate the script.

2. On error, go to the closest return point.

3. Evaluate the entry script of the return point and go to Evaluating the Script,
step 4.

4. On error, repeat the previous step until there are no more return points and
exit the workflow.

Note: Be aware of loops. If we have already entered a step once before, then skip the
entry script execution. The stack has no repeats. If the revision is moved to a step
that has already been referred to in the stack, unwind the stack to the referenced step.

12-10 Programmer’s Reference Guide

Understanding Workflows and Workflow Branching

Workflow Information Storage

Database Tables

These tables have existed since version 4.0 and only a few columns have been
added for maintenance of the workflow design:

Associated Files

These associated files store workflow information:

WorkflowAliases WorkflowHistory
WorkflowCriteria Workflows
WorkflowDocAttributes WorkflowStates
WorkflowDocuments WorkflowSteps

File Description

Workflow Design Each workflow has design that maintains the
event script information. Located in the ~/data/
workflow/design directory.

Script Design The system allows for the creation of event
scripts outside of the context of a particular
workflow. The script templates can be used as
starter examples and allow for ease of sharing of
complicated scripts. Maintained in the ~/data/
workflow/script directory.

Revision State
Information

These files are also known as the revision’s
companion file. This file maintains the current
state of the revision in a workflow. Located in ~/
data/workflow/states directory.

Saved companion
files

Saved companion files are maintained in the ~/
data/workflow/saved directory. This directory
maintains the latest state information for a
revision that has completed its workflow.

Tokens The list and definition of tokens is located in ~/
data/workflow/tokens/tokens.hda.

Programmer’s Reference Guide 12-11

Understanding Workflows and Workflow Branching

Workflow Rules and Error Handling
• A basic workflow may not jump to another workflow. The jump may only

take a revision to steps within the workflow.

• A criteria workflow may only jump to a criteria or sub workflow belonging
to the same security group.

• A jump to a step in an inactive workflow is an error. However, when initially
defining a target step for a workflow step, the step is not validated. The target
step is validated when it is actually used.

• If a jump takes you to an inactive workflow, the jump will be treated as an
error and the revision falls into the exit scenario.

• An event script that has been badly defined and causes an error in execution
is treated as if it had never executed. However, if this is an entry script then
the default entry script, which keeps track of entry time and number of times
entered, is still evaluated.

• When jumping to a step that is already in the parent list, the parent list is
unwound. For example, if the progression has been step_1, step_2, step_3
and the revision is jumped to step_2, the parent list becomes step_1, step_2
not step_1, step_2, step_3, step_2. This is an attempt to avoid recursion.

• The system does its best to avoid fast loops. These are loops that are
executed within the workflow engine without user interaction. If a jump
takes you to a step that has already been visited in the current cycle, the
workflow ignores the script, thereby refusing to calculate the jump. For
example, a user approves a revision in step_a. On evaluation of the update
step, the revision is moved to step_b. The entry script for step_b is evaluated,
it causes a jump to step_c. For step_c's entry script, the target step is step_b
and now we are in a fast loop, since without user interaction or a break in the
processing, we have returned to step_b. Consequently, the entry script for
step_b is ignored. If it were not ignored, we would be in an infinite loop.

• Slow loops are allowed. For example, loops that happen due to user
interaction or a break in workflow processing.

• All script evaluation occurs inside a database transaction. This means any
serious errors or aborts that are encountered cause no change to either
database or companion file. This also means that no Idoc Script function
should take more than a negligible amount of time. Consequently, to trigger
and outside process, an Idoc Script function should be written to execute in a
separate thread.

• A reject causes the parent list to be unwound in search of a contribution step.

12-12 Programmer’s Reference Guide

Understanding Workflows and Workflow Branching

• An exit of a workflow takes the revision to the most recently specified return
step. If none is defined, the revision exits the workflow process. The parent
list is unwound accordingly.

Programmer’s Reference Guide I-1

I n d e x

I
A
access level, 10-11
action types, 10-13

CACHE_RESULT_TYPE = 5, 10-14
CODE_TYPE = 3, 10-13
EXECUTE_TYPE = 2, 10-13
OPTION_TYPE = 4, 10-14
QUERY_TYPE = 1, 10-13

ADD_USER service, 10-12
Administration link, 2-8
Alias (database table), 10-3
AliasUse (database table), 10-3
assembling the ADMIN_LINKS template page

and returns the page, 2-9
AuthorAddress, 10-25
awkward geometry, 2-10

B
bin directory, 2-12
body definition, 5-12
BODY element, 5-12

C
CACHE_RESULT_TYPE = 5 (action type),

10-14
change form methods, 2-16
CHECKIN_LIST, 8-4

CHECKIN_NEW_FORM, 8-4
CheckoutUserAddress, 10-25
class (IntradocTemplates column), 8-4
CODE_TYPE = 3 (action type), 10-13
column, 6-7
columns

IntradocTemplates, 8-3
MergeRules, 6-6
SearchResultTemplates, 8-7

component
columns, 7-2

location, 7-2
name, 7-2

file structure, 2-14
implementing, 7-2
removing, 7-3
structure, 7-1

columns, 7-2
implementing a component, 7-2
removing a component, 7-3

component architecture, 2-3
process, 3-5

component definition file, 3-6
components file, 3-5
defining custom environment, 3-10
defining custom queries, 3-10
defining custom services, 3-13

I-2 Programmer’s Reference Guide

Index

modifying resources, 3-6
modifying standard templates, 3-7

component architecture and the Content
Server, 2-7

server actions, 2-8
server behavior, 2-7

component definition
file, 3-6
HDA file, 3-15

component description, 11-4
doc_man.htm, 11-7
manifest.hda, 11-5
multi_checkin.hda, 11-11
multi_checkin_environment.cfg, 11-12
multi_checkin_resource.htm, 11-9
multi_checkin_templates.hda, 11-14
MultiCheckinManifest.zip, 11-4
readme.txt, 11-14

component file structure
consistent file structure, 2-14

component wizard, 1-3
components, 5-5

doc_man.htm, 11-7
file, 3-5
multi_checkin.hda, 11-11
multi_checkin_environment.cfg, 11-12
multi_checkin_resource.htm, 11-9
multi_checkin_templates.hda, 11-14

components.hda, 2-13
Config (database table), 10-3
config directory, 2-13

component.hda, 2-13
config.cfg, 2-13

config.cfg, 2-13
configuration file, 7-4

defining a variable, 7-5
referencing a variable, 7-6

Configuration Variables Load, 3-3
consistent

file structure, 2-14
Content Server loading, 8-1
Content Server services, 2-8

use Administration link to..., 2-8
assemble the ADMIN_LINKS tem-

plate page and return the page, 2-9
provide a login prompt if not currently

logged in, 2-8
verify that the login has administrator

privileges, 2-9
content types, multi-checkin, 9-2
CONTROL_BEGIN_TRAN = 4 (function

parameters), 10-14
CONTROL_COMMIT_TRAN = 8 (function

parameters), 10-15
CONTROL_IGNORE_ERROR = 1 (function

parameters), 10-14
CONTROL_MUST_EXIST = 2 (function

parameters), 10-14
CONTROL_MUST_NOT_EXIST = 16

(function parameters), 10-15
Counters (database table), 10-3
create customizations, 2-2
Creating Custom Conversion Engines, 1-1
custom

components load, 3-4
environment resources, defining, 3-10
queries, defining, 3-10
services, defining, 3-13
templates, defining, 8-10

Custom Scripting Reference Guide, 1-2
customizing

graphics, 2-10
awkward geometry, 2-10
lost data, 2-10

Programmer’s Reference Guide I-3

Index

no addition/deletion, 2-10
options, 2-10

customizing graphics, 2-10
image format, 2-10
image referencing, 2-11

product functionality, 2-6
the interface, 2-5

D
data binder, 5-8
database tables, 10-3

Alias, 10-3
AliasUse, 10-3
Config, 10-3
Counters, 10-3
DocFormats, 10-3
DocMeta, 10-4
DocMetaDefinition, 10-4
DocTypes, 10-4
DocumentAccounts, 10-4
DocumentHistory, 10-4
Documents, 10-4
ExtensionFormatMap, 10-4
OptionsList, 10-4
ProblemReports, 10-4
ProjectDocuments, 10-4
RegisteredProjects, 10-5
Revisions, 10-5
RoleDefinition, 10-5
SecurityGroups, 10-5
Subscription, 10-5
UserSecurityAttributes, 10-5
Uses, 10-5
WorkflowAliases, 10-5
WorkflowCriteria, 10-5
WorkflowDocAttributes, 10-6
Workflows, 10-6

WorkflowStates, 10-6
WorkflowSteps, 10-6

dCheckoutUser, 10-25
dDocAuthor, 10-25
dDocTitle, 10-24
defining

a variable, 7-5
custom environment Resources, 3-10
custom queries, 3-10

HDA file, 3-12
HTM format, 3-11

custom services, 3-13
component definition HDA file, 3-15
MyServices, 3-13

custom templates, 8-10
description

IntradocTemplates column, 8-5
SearchResultTemplates column, 8-9

development
instance, 2-14
recommendations, 2-14

change form methods, 2-16
component file structure, 2-14
development instance, 2-14
naming conventions, 2-15
read server errors, 2-17

Development Kit, 1-1
component wizard, 1-3
SDK documentation, 1-1

displaying the multi-checkin menu, 9-2
DOC_INFO service, example, 10-16
DOC_INFO template, 10-17
doc_man.htm, 11-7
DocFormats (database table), 10-3
DocMeta (database table), 10-4
DocMetaDefinition (database table), 10-4
DocService (service type), 10-10

I-4 Programmer’s Reference Guide

Index

DocTypes (database table), 10-4
document class (template pages), 8-4
DocumentAccounts (database table), 10-4
DocumentHistory (database table), 10-4
Documents (database table), 10-4
dStatus, 10-24
dynamic content

including in a template, 5-15
dynamic content resources, 5-11

body definition, 5-12
page begin, 5-12
page end, 5-15
structure, 5-11

dynamic include, 4-3
dynamic page retrieval, 2-8
dynamic resource table, column type, 6-3
dynamic table, 4-4

E
environment, 4-8

column type, 6-3
environment file, multi-checkin, 9-2

content types, 9-2
displaying the menu, 9-2

error message, 10-12
examine source code, 2-2

create customizations, 2-2
reinstall, 2-2

EXECUTE_TYPE = 2 (action type), 10-13
ExtensionFormatMap (database table), 10-4

F
filename

IntradocTemplates column, 8-5
ResourceDefiniton column, 6-3
SearchResultTemplates column, 8-8

files used for customization, 2-12

bin directory, 2-12
config directory, 2-13
shared/config directory, 2-13
weblayout directory, 2-13

FileService (service type), 10-10
flexdata,(SearchResultTemplates column), 8-8
formtype

IntradocTemplates column, 8-5
SearchResultTemplates column, 8-7

fromTable, 6-7
function name, 10-14
function parameters, 10-14

CONTROL_BEGIN_TRAN = 4, 10-14
CONTROL_COMMIT_TRAN = 8, 10-15
CONTROL_IGNORE_ERROR = 1,

10-14
CONTROL_MUST_EXIST = 2, 10-14
CONTROL_MUST_NOT_EXIST = 16,

10-15

H
HDA file

structure, 5-2
type, 5-2

data binder, 5-8
HDA section type-@ResultSet, 5-4
HDA section-type@Properties, 5-3
purpose, 5-2
section types, 5-2
structure, 5-2

HDA section type
@Properties, 5-3

structure, 5-3
@ResultSet, 5-4

sample ResultSet, 5-7
structure, 5-6

HTM file type, 5-9

Programmer’s Reference Guide I-5

Index

dynamic content resources, 5-11
including dynamic content in a template,

5-15
reports, 5-9
template, 5-9

HTM tables, 5-9
structure, 5-10

HTML editor, 2-4
HTML include, 4-2
HTML/CSS, 2-3

I
IdcCommand Reference Guide, 1-2
Idoc Script, 2-3
image

format, 2-10
referencing, 2-11

implementing a component, 7-2
including dynamic content in a template, 5-15
internal initialization occurs, 3-3

Configuration Variables Load, 3-3
IntradocReports, 5-5
IntradocTemplates, 5-5, 8-2

columns, 8-3
class, 8-4
description, 8-5
filename, 8-5
formtype, 8-5
name, 8-4
STANDARD_QUERY_PAGE, 8-4

table, 4-7

J
Java programming, 2-4
JavaScript, 2-4

debugger, 2-4

L
loading, Content Server, 8-1
loadOrder, ResourceDefinition column, 6-4
location (component column), 7-2
lost data, 2-10

M
manifest.hda, 11-5

example, 11-6
menu, displaying multi-checkin, 9-2
merge rules, 3-5
MergeRules, 6-6

columns, 6-6
example, 6-7
merging newscores into scores, 6-10
merging scores into newscores, 6-11
newscores, 6-9
scores, 6-8

MergeRules columns, 6-6
column, 6-7
fromTable, 6-7
toTable, 6-7

merging
newscores into scores, 6-10
scores into newscores, 6-11

MetaService (service type), 10-10
modify source code, 2-2

create customizations, 2-2
reinstall, 2-2
upgrade, 2-2

modifying
resources, 3-6
standard templates, 3-7

multi_checkin.hda, 11-11
multi_checkin_environment.cfg, 11-12
multi_checkin_resource.htm, 11-9
multi_checkin_templates.hda, 11-14

I-6 Programmer’s Reference Guide

Index

multi-checkin
content types, 9-2
environment file, 9-2

multi-checkin content types, 9-2
multi-checkin menu display, 9-2

menu display, 9-2
MultiCheckinManifest.zip, 11-4
multiple browsers, 2-4
MyServices, 3-13

N
name

component column, 7-2
IntradocTemplates column, 8-4
query definition table column, 10-2
SearchResultTemplates column, 8-7
service resources, 10-9

naming conventions, 2-15
observe case, 2-16
use appropriate file name extensions, 2-16
use consistent naming conventions, 2-16
use unique file names, 2-16

newscores, 6-9
merging into scores, 6-10

no addition/deletion, 2-10

O
observe case, 2-16
OPTION_TYPE = 4 (action type), 10-14
OptionsList (database table), 10-4
outfilename (SearchResultTemplates column),

8-8

P
page assembly, 3-1

standard page beginning, 3-2
standard page ending, 3-2

standard page header, 3-2
page begin, 5-12

std_page_begin resource, 5-12
page end, 5-15

std_page_end, 5-15
page retrieval, 2-8

dynamic page retrieval, 2-8
static page retrieval, 2-8

PageHandlerService (service type), 10-10
parameters

query definition table column, 10-3
PING_SERVER service, 10-12
ProblemReports (database table), 10-4
Programmer’s Reference Guide, 1-2
ProjectDocuments (database table), 10-4
providing a login prompt if not currently

logged in, 2-8

Q
QisSubscribed, 10-26
query, 4-5

column type, 6-3
query definition table columns, 10-2

name, 10-2
parameters, 10-3
queryStr, 10-3

query definition tables, 10-2
query resource, 10-1

database tables, 10-3
example, 10-7
query definition

table columns, 10-2
tables, 10-2

QUERY_TYPE = 1 (action type), 10-13
queryStr (query definition table column), 10-3

Programmer’s Reference Guide I-7

Index

R
read server errors, 2-17
readme.txt, 11-14
referencing a variable, 7-6
RegisteredProjects (database table), 10-5
reinstall, 2-2
removing a component, 7-3
reports (shared/config directory), 2-13
reports load, 3-4
required skills, 2-3

component architecture, 2-3
HTML/CSS, 2-3
Idoc Script, 2-3, 2-4
Java programming, 2-4
JavaScript, 2-4

required tools, 2-3
HTML editor, 2-4
JavaScript debugger, 2-4
multiple browsers, 2-4
Software development kit, 2-4
text editor, 2-4

ResourceDefinition, 5-5, 6-2, 6-3
columns, 6-3
example, 6-4
loadOrder, 6-4
tables, 6-4

ResourceDefinition columns, 6-3
dynamic resource table, 6-3
environment, 6-3
filename, 6-3
query, 6-3
services, 6-3
static resource table, 6-3
template, 6-3
type, 6-3

resources, 5-9
resources (shared/config directory), 2-13

ResultSet name
components, 5-5
Intradoc Templates, 5-5
IntradocReports, 5-5
ResouceDefinition, 5-5
SearchResultsTemplates, 5-5

ResultSet, sample, 5-7
retrieve pages, 2-7
Revisions (database table), 10-5
RoleDefinition (database table), 10-5
run

a search engine service, 2-7
a system server service, 2-7

S
sample ResultSet, 5-7
scores, 6-8

merging into newscores, 6-11
SDK See Software development kit, 2-4
SDK documentation, 1-1

Creating Custom Conversion Engines, 1-1
Custom Scripting Reference Guide, 1-2
IdcCommand Reference Guide, 1-2
Programmer’s Reference Guide, 1-2

searching services, 2-9
SearchResultsTemplates, 5-5
SearchResultTemplates, 8-6

columns, 8-7
description, 8-9
filename, 8-8
flexdata, 8-8
formtype, 8-7
name, 8-7
outfilename, 8-8

table, 4-7
section types (HDA file structure), 5-2
SecurityGroups (database table), 10-5

I-8 Programmer’s Reference Guide

Index

server actions, 2-8
Content Server services, 2-8
page retrieval, 2-8
searching services, 2-9

server behavior, 2-7
server information flow, 2-7
web browser requests, 2-7

server information flow, 2-7
server start up actions, 3-3

custom components load, 3-4
internal initialization occurs, 3-3
standard resources, templates, and reports,

3-4
service, 4-6

attributes, 10-10
type, 10-10

name, 10-9
resource, 10-8
resource structure, 10-8

service (service type), 10-10
service actions, 10-13

function name, 10-14
function parameters, 10-14

CONTROL_BEGIN_TRAN = 4,
10-14

CONTROL_COMMIT_TRAN = 8,
10-15

CONTROL_IGNORE_ERROR = 1,
10-14

CONTROL_MUST_EXIST = 2,
10-14

CONTROL_MUST_NOT_EXIST =
16, 10-15

types, 10-13
CACHE_RESULT_TYPE = 5, 10-14
CODE_TYPE = 3, 10-13
EXECUTE_TYPE = 2, 10-13

OPTION_TYPE = 4, 10-14
QUERY_TYPE = 1, 10-13

service resources
access level, 10-11
actions, 10-13
DOC_INFO service example, 10-16
error message, 10-12
example, 10-16
service attributes, 10-10
service name, 10-9
subjects notified, 10-12
sub-service, 10-11
template page, 10-11

service type, 10-10
DocService, 10-10
FileService, 10-10
MetaService, 10-10
PageHandlerService, 10-10
service, 10-10
UserService, 10-10
WorkflowService, 10-10

services
column type, 6-3

shared/config directory, 2-13
reports, 2-13
resources, 2-13
templates, 2-13

Software development kit, 2-4
SQL, 2-4
standard page

beginning, 3-2
ending, 3-2
header, 3-2

standard resources, templates, and reports
load, 3-4

STANDARD_QUERY_PAGE
(IntradocTemplate entry), 8-4

Programmer’s Reference Guide I-9

Index

static page retrieval, 2-8
static resource table, column type, 6-3
std_page_begin, 5-12
std_page_end, 5-15
structure See component structure, 7-1
subjects notified, 10-12
Subscription (database table), 10-5
sub-service, 10-11

T
tables (ResourceDefinition column), 6-4
template, 4-7

column type, 6-3
page, 10-11

templates, 3-4
defining (custom), 8-10
file, 8-2
IntradocTemplates, 8-2
SearchResultTemplates, 8-6
VerityTemplates, 8-6

templates (shared/config directory), 2-13
templates and reports, 5-9

HTM tables, 5-9
resources, 5-9

templates.hda file
IntradocTemplates table, 4-7
SearchResultTemplates table, 4-7
VerityTemplates table, 4-7

text editor, 2-4
toTable, 6-7
type, ResourceDefinition coluumn, 6-3

U
Unable to retrieve information for

{dDocName}, 10-24
Unable to retrieve revision history for

{dDocName}, 10-26

Understanding Component Architecture, 2-1,
2-2

component architecture and the Content
Server, 2-7

customizing options, 2-10
customizing product functionality, 2-6
customizing the interface, 2-5
development recommendations, 2-14
files used for customization, 2-12
required skills, 2-3
required tools, 2-3

Understanding Component Assembly, 3-1
component architecture process, 3-5
merge rules, 3-5
page assembly, 3-1
server start up actions, 3-3

Understanding Content-Centered Template
Metadata, 9-1

multi-checkin environment file, 9-2
Understanding HDA and HTM File Types, 5-1

HDA file type, 5-2
HTM file type, 5-9

Understanding Query and Service Resources,
10-1

query resource, 10-1
service resource, 10-8

Understanding Resource Types, 4-1
dynamic table, 4-4
environment, 4-8
HTML include, 4-2
query, 4-5
service, 4-6
template, 4-7

Understanding Templates, 8-1
Content Server loading, 8-1
defining custom templates, 8-10
IntradocTemplates, 8-2

I-10 Programmer’s Reference Guide

Index

SearchResultTemplates, 8-6
template file, 8-2
VerityTemplates, 8-6

Understanding the Component Definition
File, 6-1

MergeRules, 6-6
ResourceDefinition, 6-2

Understanding the Components HDA File, 7-1
component structure, 7-1
configuration file, 7-4

Understanding the MultiCheckin Component,
11-1

component description, 11-4
Understanding Workflow Brnching, 12-1
upgrade, 2-2
use appropriate file name extensions, 2-16
use consistent naming conventions, 2-16
use unique file names, 2-16
Users (database table), 10-5
UserSecurityAttributes (database table), 10-5
UserService (service type), 10-10

V
variable

defining, 7-5
referencing, 7-6

verifying that the login has administrator
privileges, 2-9

VerityTemplates, 8-6
VerityTemplates table, 4-7

W
web browser requests, 2-7

retrieve pages, 2-7
run a search engine, 2-7
run a system server service, 2-7

weblayout directory, 2-13

WorkflowAliases (database table), 10-5
WorkflowCriteria (database table), 10-5
WorkflowDocAttributes (database table),

10-6
WorkflowDocuments, 10-6
Workflows (database table), 10-6
WorkflowService (service type), 10-10
WorkflowStates (database table), 10-6
WorkflowSteps (database table), 10-6

	Cover Page
	Table of Contents
	The Development Kit
	Overview
	SDK Documentation
	Creating Custom Conversion Engines
	IdcCommand Reference Guide
	Custom Scripting Reference Guide
	Programmer's Reference Guide

	Component Wizard

	Understanding Component Architecture
	Overview
	Examine or Modify Source Code
	Create Customizations
	Reinstall or Upgrade

	Required Skills and Tools
	Required Skills
	Required Tools

	Customizing the Interface
	Customizing Product Functionality
	Component Architecture and the Content Server
	Server Behavior
	Server Actions
	Page Retrieval
	Content Server Services
	Search Services

	Customizing Options
	Customizing Graphics
	Image Format
	Image Referencing

	Files Used for Customization
	Bin Directory
	Config Directory
	Shared/Config Directory
	Weblayout Directory

	Development Recommendations
	Development Instance
	Component File Structure
	Consistent File Structure

	Naming Conventions
	Use Unique File Names
	Use Appropriate File Name Extensions
	Use Consistent Naming Conventions
	Observe Case

	Change Form Methods
	Read Server Errors

	Understanding Component Assembly
	Overview
	Page Assembly
	Server Start Up Actions
	Internal Initialization Occurs
	Standard Resources, Templates, and Reports Load
	Custom Components Load

	Merge Rules
	Component Architecture Process
	Components File
	Component Definition File
	Modifying Resources
	Modifying Standard Templates
	Defining Custom Environment Resources
	Defining Custom Queries
	Defining Custom Services

	Understanding Resource Types
	Overview
	HTML Include
	Dynamic Table
	Query
	Service
	Template
	Environment

	Understanding HDA and HTM File Types
	Overview
	HDA File Type
	HDA File Structure
	Section Types

	Purpose
	HDA Section Type: @Properties
	HDA Section Type: @ResultSet
	Data Binder

	HTM File Type
	Templates and Reports
	Resources
	HTM Tables
	Structure

	Dynamic Content Resources
	Structure

	Including Dynamic Content in a Template

	Understanding the Component Definition File
	Overview
	ResourceDefinition
	ResourceDefinition Columns
	type
	filename
	tables
	loadOrder
	Example ResourceDefinition

	MergeRules
	MergeRules Columns
	fromTable
	toTable
	column
	Example MergeRules

	Understanding the Components HDA File
	Overview
	Component Structure
	Component Columns
	name
	location

	Implementing a Component
	Removing A Component

	Configuration File
	Defining a Variable
	Referencing a Variable

	Understanding Templates
	Overview
	Content Server Loading

	Templates File
	IntradocTemplates
	IntradocTemplates Columns
	name
	class
	formtype
	filename
	description

	VerityTemplates
	SearchResultTemplates
	SearchResultTemplates Columns
	name
	formtype
	filename
	outfilename
	flexdata
	description

	Defining Custom Templates

	Understanding Content-Centered Template Metadata
	Overview
	Multi-Checkin Environment File
	Multi-Checkin Menu Display
	Multi-Checkin Content Types

	Understanding Query and Service Resources
	Overview
	Query Resource
	Query Definition Tables
	Query Definition Table Columns
	name
	queryStr
	parameters

	Database Tables
	Example Query

	Service Resource
	Service Resource Structure
	Service Name
	Service Attributes
	Service Class
	Access Level
	Template Page
	Sub-Service
	Subjects Notified
	Error Message

	Service Actions
	Type of Action
	Function Name
	Function Parameters

	Example Service

	Understanding the MultiCheckin Component
	Overview
	Component Description
	MultiCheckinManifest.zip
	manifest.hda
	Example Manifest

	components/doc_man.htm
	components/multi_checkin_resource.htm
	components/multi_checkin.hda
	components/multi_checkin_environment.cfg
	components/multi_checkin_templates.hda
	readme.txt

	Understanding Workflows and Workflow Branching
	Overview
	Workflow Types
	Basic Workflows
	Criteria Workflows
	Sub-Workflows

	Workflow Steps
	Jumps
	Tokens

	Workflow and Script Templates
	Workflow Templates
	Script Templates

	Workflow Branching
	Evaluating the Script
	Actions Performed on the Last Step
	Actions Performed on Restart
	Actions Performed on Exit
	Actions Performed on Error
	Actions Performed on Reject
	Executing the Script

	Workflow Information Storage
	Database Tables
	Associated Files

	Workflow Rules and Error Handling

	Index

