Stellent

Programmer’s Reference Guide

SDK-001-500

© 1996-2001 Stellent, Inc. All rights reserved. No part of this document may be repro-
duced or transmitted in any form or by any means, electronic or mechanical, including
photocopying, recording, or by any information storage and retrieval system without writ-
ten permission from the owner, Stellent, Inc., 7777 Golden Triangle Drive, Eden Prairie,
Minnesota 55344 USA. The copyrighted software that accompanies this manual is
licensed to the Licensee for use only in strict accordance with the Software License Agree-
ment, which the Licensee should read carefully before commencing use of this software.

Stellent, the Stellent logo, Stellent Content Server, Stellent Content Management, Stellent
Content Publisher, Stellent Dynamic Converter, and Stellent Inbound Refinery are trade-
marks of Stellent, Inc. in the USA and other countries.

Adobe, Acrobat, the Acrobat Logo, Acrobat Capture, Distiller, Frame, the Frame logo,
and FrameM aker are registered trademarks of Adobe Systems Incorporated.

ActivelQ isatrademark of ActivelQ Technologies, Incorporated. Portions Powered by
Active 1Q Engine.

HP-UX is aregistered trademark of Hewlett-Packard Company

Kofax isaregistered trademark, and Ascent and Ascent Capture are trademarks of Kofax
Image Products.

Linux is aregistered trademark of Linus Torvalds.

Microsoft is aregistered trademark, and Windows, Word, and Access are trademarks of
Microsoft Corporation.

MrSID isproperty of LizardTech, Inc. It is protected by U.S. Patent No. 5,710,835. For-
eign Patents Pending.

Portions Copyright © 1991-1997 LEAD Technologies, Inc. All rights reserved.
Portions Copyright © 1990-1998 Handmade Software, Inc. All rights reserved.
Portions Copyright © 1988, 1997 Aladdin Enterprises. All rights reserved.

Portions Copyright © 1997 Soft Horizons. All rights reserved.

Portions Copyright © 1999 ComputerStream Limited. All rights reserved.

Portions Copyright © 1995-1999 LizardTech, Inc. All rights reserved.

Red Hat is aregistered trademark of Red Hat, Inc.

Sun isaregistered trademark, and Solarisis atrademark of Sun Microsystems, Inc.
UNIX isaregistered trademark of The Open Group.

Verity is aregistered trademark of Verity, Incorporated.

All other trade names are the property of their respective owners.

Chapter 1. The Development Kit

OVEIVIBW . . e 1-1
SDK Documentationt 1-1
Creating Custom Conversion Engines 1-1
IdcCommand ReferenceGuide. 1-2
Custom Scripting ReferenceGuide. 1-2
Programmer's ReferenceGuide. 1-2
ComponentWizard 1-3
Chapter 2: Understanding Component Architecture

OVEIVIBW ottt e e e 2-1
Examine or Modify SourceCode 2-2
Create Customizations.oieiii i 2-2
Reinstall orUpgradeo, 2-2
Required Skillsand Toolst 2-3
RequiredSKills i 2-3
Required TOOIS ... 2-4
Customizingthelnterface 2-5
Customizing Product Functionality 2-6
Component Architecture and the Content Server 2-7
Server Behavior. 2-7
Server ACtiONS.o 2-8
PageRetrieval i 2-8
Content Server SEerViCeS . .. oo v v 2-8

SearCh SErVICES. .. oo 2-9
Customizing Options.ottt e 2-10
Customizing Graphics., 2-10

Programmer’s Reference Guide iii

Contents

ImageFormat. 2-10
ImageReferencing. i i 2-11
FilesUsed for Customization.coveunn... 2-12
BinDirectoryo 2-12
Config DIrectoryoouiii i 2-13
Shared/Config Directory, 2-13
Weblayout DIireCtoryoovei i 2-13
Development Recommendations. 2-14
DevelopmentInstance.coiiiinn., 2-14
Component FileStructure 2-14
Consistent File Structure. 2-14
NamingConventions., 2-15
UseUniqueFileNames 2-16

Use Appropriate File Name Extensions 2-16

Use Consistent Naming Conventions. 2-16
ObserveCase.o 2-16
ChangeFormMethods 2-16
Read Server Errors. 2-17

Chapter 3: Under standing Component Assembly
OVEIVIBIW .« oot e 3-1
Page Assembly i 31
Server Start UpActions. 33
Internal InitializationOccurs. 3-3
Standard Resources, Templates, and ReportsLoad. 3-4
Custom ComponentsLoad 34
MergeRUIES. e 35
Component Architecture Process.coeieien... 35
ComponentsFile ..., 35
Component DefinitionFile 3-6
Modifying Resources. 3-6
Modifying Standard Templates. 3-7
Defining Custom Environment Resources 3-10
Defining CustomQueriescociiiiiann. 3-10
Defining Custom Services.cociii i 313
Chapter 4: Understanding Resource Types

OVEIVIBW oot e 4-1
HTML Include. 4-2
DynamicTable. i i 4-4
QUENY o 4-5
SEIVICE .ttt 4-6

iv Programmer’s Reference Guide

Contents

Template. e 4-7
Environment. 4-8
Chapter 5: Understanding HDA and HTM File Types
OVEIVIBW oot e e 5-1
HDA FileType. e 5-2
HDA FileStructure 5-2
SeCtioN TYPES . ..o oo 5-2
PUIPOSE . .o 5-2
HDA Section Type: @Properties.................. 5-3
HDA Section Type: @ResultSet. 54
DataBinder........... ... 5-8
HTM FleType. ..o e 5-9
Templatesand Reports ..., 5-9
RESOUICES. . . . o 59
HTM Tables. e 5-9
StrUCtUre 5-10
Dynamic Content RESOUrCESo v i i i iann 5-11
Structure 5-11
Including Dynamic ContentinaTemplate............. 5-15
Chapter 6: Under standing the Component Definition File
OVEIVIBW oot e e 6-1
ResourceDefinition. 6-2
ResourceDefinition Columns. 6-3
VP e 6-3
filename. 6-3
tables. . ..o 6-4
loadOrder. 6-4
Example ResourceDefinition 6-4
MergeRUIES i e 6-6
MergeRulesColumnso, 6-6
fromTable 6-7
toTable. 6-7
COlUMN. .o 6-7
ExampleMergeRules 6-7
Chapter 7: Understanding the Components HDA File
OVEIVIBW . .t e 7-1
Component Structure e 7-1
Component Columns.ovii i 7-2
NAIME . .t e e e 7-2

Programmer’s Reference Guide v

Contents

locationo 7-2
ImplementingaComponent 7-2
Removing AComponent.covivnnun... 7-3

ConfigurationFile i i, 7-4
DefiningaVariable................... 7-5
ReferencingaVariable 7-6

Chapter 8: Understanding Templates

OVEIVIBW . . 8-1
Content Server Loading.oviiininii 8-1

TemplatesFile 8-2
IntradocTemplates. ..., 8-2
IntradocTemplatesColumns 8-3

NAIME . .t e 8-4

Class. ... 8-4

formtype ... o 8-5

filename. 8-5

desCription.oov i 8-5

VerityTemplates. 8-6

SearchResultTemplates 8-6
SearchResultTemplatesColumns 8-7

NAIME . .o e 8-7

formtype 8-7

filename. 8-8

outfilename 8-8

flexdata 8-8

description.t 8-9

Defining Custom Templates.coiii ... 8-10

Chapter 9: Understanding Content-Centered Template M etadata

OVEIVIBW oot e e 9-1

Multi-Checkin Environment File. 9-2
Multi-CheckinMenuDisplay 9-2
Multi-CheckinContent Types.cooieien... 9-2

Chapter 10: Under standing Query and Service Resour ces

OVEIVIBW . .o 10-1

QUENY RESOUICE . . o oot e e e 10-1
Query DefinitionTables 10-2
Query Definition TableColumns 10-2

NAIME . . o 10-2

QUENYSH . .o e 10-3

Vi Programmer’s Reference Guide

Contents

ParamMEtErS. . . . e 10-3
Database Tables. i 10-3
ExampleQuery 10-7

SEIVICERESOUICE . . .o vttt 10-8
Service Resource Structure 10-8
ServiceName. 10-9
Service Attributes 10-10

Service Class. . ..o v 10-10

AccessLevel 10-11

TemplatePage. 10-11

SUD-SEIVICE. . . oo 10-11

Subjects Notified. 10-12

ErrorMessage. ... 10-12
SErVICE ACHONS . .. oot 10-13

Typeof Action i, 10-13

FunctionName 10-14

FunctionParameters 10-14
ExampleService i 10-16

Chapter 11: Under standing the M ultiCheckin Component
OVEIVIBW . ot e e 11-1
Component Description 11-4

MultiCheckinManifest.zip.......................... 11-4
manifesthda. 11-5

ExampleManifest................. 11-6
components/doc manhtm.......................... 11-7
components/multi_checkin_resource.htm.............. 11-9
components/multi_checkinhda..................... 11-11
components/multi_checkin_environment.cfg.......... 11-12
components/multi_checkin _templateshda............ 11-14
readmetxt 11-14

Chapter 12: Understanding Wor kflows and Wor kflow Branching
OVEIVIBW .o e 12-1

Workflow TYpeso e 12-2

BasicWorkflows. 12-2

CriteriaWorkflows 12-2

Sub-Workflows.o i 12-3
Workflow Steps. 12-3
JUMPS. . 12-4
TOKENS . .. 12-5

Workflow and Script Templates 12-6

Workflow Templates.coiint. 12-6

Programmer’s Reference Guide Vii

Contents

ScriptTemplates.o i 12-6
WorkflowBranching, 12-7
Evaluatingthe Script. 12-7
Actions PerformedonthelLastStep 12-8
ActionsPerformedonRestart. 12-8
ActionsPerformedonExit 12-8
ActionsPerformedonError 12-8
ActionsPerformedonReject 12-8
ExecutingtheScript 12-9
Workflow Information Storage 12-10
Datdbase Tablesco o 12-10
Associated Files 12-10
Workflow Rulesand Error Handling. 12-11

viii Programmer’s Reference Guide

The Development Kit

Overview

The Development Kit for the Content Server consists of the SDK
documentation and The Component Wizard.

SDK Documentation

The development kit documentation provides programmer level development
information. Thisinformation is accessed as PDF files by selecting Start—
Programs—Stellent Content Server— Master _on_server—Utilities—SDK
Documentation.

Creating Custom Conversion Engines

This document provides information on creating custom conversion engines for
the Refinery and Visual Basic module API specifications. This guide provides
developers with the information they need to create and implement multiple
custom conversion engines for the Refinery.

Programmer’s Reference Guide 1-1

The Development Kit

1-2

l[dcCommand Reference Guide

This document provides information on the Java Command Utility and ActiveX
Command Utility for the Content Server. The IdcCommand utility is a stand-
alone Java application that enables usersto execute services. The program reads
a command file containing commands and parameters and calls the specified
services. I[dcCommandX isan ActiveX control that enables a program to
execute a service and retrieve file path information.

Custom Scripting Reference Guide

This document provides information about Idoc Script application, functions,
predefined variables and configuration settings, Web server variables; and
HTML Forms scripting. The document contains syntax, code references,
examples, and descriptions

Programmer’s Reference Guide

This document provides a general description of how the system works and
background information required for performing customizations. This guide
supplies the pertinent information developers need to develop custom
components for the Content Server. Information includes code references,
technical tips, and examples.

Programmer’s Reference Guide

The Development Kit

Component Wizard

The Component Wizard is a development tool that automates the process of
creating custom components. A developer can create custom components and
modify existing components. Additionally, a developer can package any files
associated with the custom component.

Launch the Component Wizard by selecting Start—Programs—Stellent
Content Server—Master_on_server—Utilities—Component Wizard.

The Component Wizard can also be launched by navigating with Windows NT/
2000 Explorer to the <home>\bin\ComponentWizard.exe file.

Follow these steps to launch from a command prompt:
1. Typecd stellent\bin

2. PressEnter.

3. TypeConponent W zard

4. PressEnter.

Programmer’s Reference Guide 1-3

Understanding Component
Architecture

Overview

Components are program modules that are designed to interact with each other
a runtime. Components can vary in size, can be authored by various
programmers using different development environments and may or may not be
platform independent. Components can be run on a single instance or across
multiple instances such as a corporate intranet. Component architecture is
derived from object-oriented technol ogies. Component software, such as the
Content Server, implies the use of small modules that enables customization of
the application.

There are several advantages to using Component Architecture with the Content
Server.

« Examine or modify source code without compromising the integrity of the
product.

« Create Customizations with copies of original code modules.
« Reinstall or upgrade without compromising customizations.

Programmer’s Reference Guide 2-1

Understanding Component Architecture

Examine or Modify Source Code

The Content Server loads many of its resources from external text files. Thus, it
provides the ability to view the files to analyze how the system works.

Create Customizations

The Content Server was designed to provide the ability to make changesto
copies of these resources and override the look and fedl of the system. The
primary file for implementing customizations is the <home>/config/
components.hdafile.

When the server loads, the final step isto load any defined components. The
components.hda file provides the Content Server the required information on
which component to load.

@ Note: Itemswith identical names override one another, with the last item loaded
having its definition take precedence over all others.

Reinstall or Upgrade

Files such as std_page.htm can be copied and the definitions rewritten for some
or all of the resources defined within the product. This leaves the original files
intact. Once rewritten, the customized files simply need to be included with the
use of the components.hdafile.

2-2 Programmer’s Reference Guide

Understanding Component Architecture

Required Skills and Tools

To take advantage of the extensibility of the Content Server, it isimportant to
understand the skills and tools needed for performing customi zations using
Component Architecture.

Required Skills

The Content Server brings together awide variety of technologies to deliver
advanced functionality. To modify the system, certain experience and skills
with some or all of these technologies is required. The technical skills required
will vary depending on the complexity of the customization. Many
customizations can be accomplished with a knowledge of HTML, Component
Architecture, and Idoc Script.

Thislist describes, in descending order of importance, the technol ogies you may
need experience and skill when modifying the content Server.

« HTML/CSS—To make changes to the templates a good understanding of
HTML and cascading style sheets (CSS) is required. The templates are not
complex in their use of HTML, but they make constant use of HTML tables
and frequent use of forms. The std_page.htm file includes cascading style
sheets to control the look-and-feel of the default templates, including fonts
and layout. Therefore, knowledge of these aspects of HTML is essential to
creating customizations.

» Component Architecture—To understand how your changes will be
implemented, a conceptual understanding of how the Content Server worksis
required.

» Idoc Script—Almost every page that is statically or dynamically assembled
includes some ldoc Script. Idoc Script is a proprietary scripting language. It
provides the method for processing various page elements after the browser
has made a request, but before the requested page is returned.

For additional information, refer to the Custom Scripting Reference Guide.
Thisreference manual includes a categorically arranged, alphabetical listing
of pre-defined variables, Idoc Script commands, and functions. This
reference tool includes a description of each of the commands, as well as
proper syntax and examples.

Programmer’s Reference Guide 2-3

Understanding Component Architecture

2-4

JavaScript—Maost Content Server pages do not use JavaScript. Notable
exceptions are the Search and Check in pages. For changes to these pages
you should have an understanding of JavaScript. In addition, it is important
to understand how JavaScript works with HTML forms.

SQL —Structured Query Language is used in the system to manage
information related to the content items. The queriesyou build with SQL can
relate relevant information about each content item on a web page.

Java Programming—The server isimplemented with Java classes. A
thorough understanding of Java and the Content Server Java classfilesis
required before any changes can be made to that part of the system. However,
the product can be customized extensively without having to work with Java.

Required Tools

These are some of the tools that you may find useful in performing
modifications:

Text Editor—M ost product customizing can be done with a normal text
editor such as Microsoft WordPad.

HTML Editor (non-graphical mode)—Use caution when using an HTML
editor. Often, such programs change the source HTML. If you use a graphical
editor such as the one provided with Microsoft Visual InterDev, make sure
you edit in anon-graphical mode.

Important: Using an HTML editor inits graphical mode may cause Idoc Script tags
to be converted into a string of charactersthat will no longer be recognized by the
Content Server.

» JavaScript Debugger—A JavaScript debugger will ease the task of

JavaScript development. Java development will require that you have an
appropriate Java development environment.

Multiple Browser s—We recommend that changes be tested in all versions
of browsers that your clients will use. Internet Explorer and Netscape
Navigator do not display content in the same manner. In addition, different
versions of the same browser may exhibit different behavior.

Softwar e Development Kit (SDK)—The Software Development Kitisa
collection of documentation and the Component Wizard. The documentation
provides the conceptual knowledge for customization and reference
information. The Component Wizard is designed to assist you in developing
your custom components.

Programmer’s Reference Guide

Understanding Component Architecture

Customizing the Interface

By creating custom components, the interface can be customized to meet your
business specifications. Some modifications can be as simple as replacing the
graphic images that appear on displayed pages. In this example, a sample,
customized interface is provided.

Befor e Customization:

STELLENT

== CONTENT SERVER

Bk | Home Library | Soarch Hielp

* COFpOFILe Biwslomar

s finsncil faws

= itock updates

= gvani calandar
CUSTOMIZE THIS AREA FORYOUR RUSINESS.

= sales bighlighns

E pPAFLAGF Adwi

After Customization:

Acme Consulting

57,

)
l—l e Ik ®iw iy | Wtk e
| 3 dew Pt
‘ is
el s iy

-JEI: T T viou ll Stand Oul o the Sroed

|.} Adwirial sl

Programmer’s Reference Guide 2-5

Understanding Component Architecture

Customizing Product Functionality

2-6

Customizations can be performed to the Content Server to change the

functionality of the software. For example, a custom component can be created

that changes how Info Fields (metadata) are presented. For example, the
Comments field on the Content Check In Form can be pre-filled with
information, or the Expiration Date can be specified as arequired field.

Sample Content Check In Form:

Content Check In Form

Contend I |

Type |-I1D.l1CI:T-A::ma Accounting Deparmens j

Title |
Ak |"::-.-'E srun "'|
Security Groug |ﬂnr:-'- '|

Primary Fila | Browse
Altarnate File | Browse
Hesizion [

Thia iz & pre-filledd entry. =]
Comments

Programmer’s Reference Guide

Understanding Component Architecture

Component Architecture and the Content Server

Server Behavior

The Content Server enables you to use aweb browser to check in and retrieve
content items, control accessto content items, and search for content items. This
section gives a high-level description of how the Content Server works using
the Verity Search APl and Content Server search operations.

The web browser sends a request to the web server and the web server responds
to the request. Three types of requests to the web server can be made:

* Retrieve pages
* Run asystem server service
* Run asearch engine service

When a search request is made, the web server routes the request through the
Content Server. The system server then communicates with the search engineto
perform the search.

Server Information Flow:

ieh Browsser Chent

Search Engine
Response
Feguest —
Search
| Fequest
Sewrch
Rezponze

~~ Response-.

Service)
WY Server 3 A/\
) Core Sarver
T Service
FRequest

Programmer’s Reference Guide 2-7

Understanding Component Architecture

2-8

Server Actions

There are three main types of server actions that can be performed with the
software:

» Pageretrieva
» Content Server services
» Searching services

Page Retrieval

When areguest for apage is made, one of two available pagetypesis delivered.
The two types of pages are: static and dynamic.

» Static Page Retrieval—Only one of the pagesin the Content Server web site
is considered static. This means that the content of the page is pre-formatted
at the time of the request. The home page, weblayout/portal .htm, is a static
page. When abrowser request is made for this page the request is handled by
the standard functionality of the web server.

» Dynamic Page Retrieval—A protected page is also referred to as dynamic.
When abrowser request is made for aprotected page, adynamic page such as
the standard query page or a search request, the web server relies on the
Content Server or the search engine to fulfill the request.

Content Server Services

When arequest is made for a protected page, such asthe Administration link on
the Personal Navigation area, the browser is placing a request for a Content
Server service. In the case of the Administration link, it is requesting the
GET_ADMIN_PAGE service. The URL of the Administration link containsthe
following commands:

Idc_cgi _isapi.dll?ldcService=GET_ADM N_PACE&Act i on=CGet Tenpl at ePag
e&Page=ADM N_LI NKS

The web server recognizes this request as a Content Server function and sends
the specific request to the Content Server. When the Content Server processes
the request, it passes the result of the request back to the web server. The web
server then delivers the results of the Content Server service to your web
browser.

In the case of the Administration link, the service:
» Providesalogin prompt if not currently logged in

Programmer’s Reference Guide

Understanding Component Architecture

» Verifiesthat thelogin has administrator privileges
» Assemblesthe ADMIN_LINKS template page and returns the page

When afileis checked infout or areport requested from the database, the
Content Server performs the listed tasks. When a search request is submitted,
the browser first sends arequest for the STANDARD_QUERY _PAGE
template. The Content Server also handles this request. The result of the request
isthat the web server delivers a search form to the web browser.

Search Services

When a search form is completed and a request made, the browser sends a
reguest to the web server to perform a search. When using the search engine, the
URL for the request contains the following syntax:

/intradoc-cgi/idc_cgi isapi.dl|? idcService=GET_SEARCH RESULTS

The web server recognizes this request as a Content Server function and sends
the specific request to the Content Server for processing. In doing so, the
Content Server sends a request to the search engine using a search engine API.

The search engine sends the search results back to the Content Server, which
sends theresultsto the web server. The web server then deliversthe result of the
search service to the web browser.

The Content Server has been placed between the web server and the search
engine to enabl e the search and search results template to be processed based on
information supplied by the requestor. If additional security is heeded for your
site, the Content Server can perform those functions. For example, limiting
search result fields based on the role of the user requesting the search.

Programmer’s Reference Guide 2-9

Understanding Component Architecture

Customizing Options

Customizing Graphics

The easiest way to change the look of the Content Server web site isto change
just the graphic images that are referenced on the corresponding template page.
Component Architecture is not required for making these types of changes,
however we do not recommend this method.

If you choose to change the image references without using Component
Architecture, you should be aware that it may have the following limitations:

» Awkward Geometry—The image may appear skewed or misshapen unless
image dimensions are identical to the original image replaced.

* No Addition/Deletion—Y ou will only be able to replace images. Y ou will
not be able to add or delete existing images. Additionally, after replacing the
images, you are still left with the same layout and functionality.

» Lost Data—Changeswill belost if the product has to be reinstalled or
upgraded, since the files in the <home>/weblayout/images directory will be
overwritten.

Image Format

The graphic images used by the software islocated in the <home>/weblayout/
images directory. Theseimagesarein aGlF format that can be opened, viewed,
and edited in most any image editor. For best results, you should keep theimage
geometry (height and width) of the replacement image the same as that of the
original image. If the height or width is changed, the web browser will scale the
images and the images may be distorted.

2-10 Programmer’s Reference Guide

Understanding Component Architecture

Image Referencing

All images are defined in the following file: <home>/shared/config/resources/
std_page.htm. To implement your images, either of these methods can be used:

Method 1

1. Giveyour new image the same name as the original image it will replace.

2. Copy the existing file (<home>/weblayout/images) to another location and
rename it.

3. Copy your new image files to the <home>/weblayout/images/ directory.

Method 2

1. Locatethe image referencein the std_page.htm file.
2. Change the path name to accommodate the location of your new images.

3. Copy your new images to the folder located beneath the <home>/
weblayout/images/ directory.

Programmer’s Reference Guide 2-11

Understanding Component Architecture

Files Used for Customization

2-12

Most customizations made with Component Architecture are done with thefiles
that are found primarily in four directories:

* home>/bin/

» <home>/shared/config/

» <home>/config/

» <home>/weblayout

Bin Directory

To use the command line features of the Content Server, access the executable
files located in the <home>/bin/ directory.

Note: If you have the Content Server set up as an automatic service and attempt to
start the Content Server using this method (IdcServer or IdcServerNT) at the

command prompt, you will receive an error message that states: The port could not
be listened to and is already is use.

Thisisthe default structure of the <home>/bin/ directory:

Element

Description

bin

The bin directory stores a number of executable files

including:

BatchL oader

Component Wizard

SystemProperties

|dcServer
[dcServerNT

Programmer’s Reference Guide

Understanding Component Architecture

Config Directory

The <home>/config/ directory acts as alocation for storing global information.
The two main files in the <home>/config/ directory that are utilized when
performing customizations with the component architecture process are
described in the following table.

Element Description
components.hda Thefile that describes custom components that
have been added to the system.
config.cfg The file that defines system configuration
variables.

Shared/Config Directory

The <home>/shared/config/ directory contains files with HDA and HTM
formats. Thisisthe file structure with one Content Server instance installed.
Thetop-level in the directory used when customizing the product is described in
the following table.

Element Description

reports Holds templates for the Content Server reports.
resources Holds resource definitions (queries, page resources, and
services) for the Content Server, including the
std_page.htm file.

templates Holds templates for all Content Server pages.

Weblayout Directory

The weblayout directory containsimages that are displayed on the various
pages of the content Server web site. The structure for the <home>/weblayout/
directory is described in the following table.

Element Description

weblayout Thefile that stores any images or web viewable
content items that are checked into the system.

Programmer’s Reference Guide 2-13

Understanding Component Architecture

Development Recommendations

2-14

This section contains some guidelines to assist you in developing custom
components. This information includes recommendations about development
instances, custom component file structures, naming conventions, case
observance, form methods, and server errors.

Development Instance

Whenever you are performing development, you should isolate your
development efforts from your production system. Remember to include the
same custom information fields you will be using in both your production and
development instances. Be sure to check in afew sample content items in your
devel opment instance.

Once you have successfully tested your modifications on the devel opment
instance, it is asimple matter of copying the required filesto your production
system, installing the components using the <home>/config/components.hda
file and restarting your server.

If you are having problems with your server and you have installed custom
components, you may need to disable (uninstall) the custom components and
restart your server.

Component File Structure

Y our custom components should be placed into their own directory. By default,
the Component Wizard places all custom components into afolder named
custom, which islocated directly beneath the root Content Server installation.
Custom components do not have to be stored on the same machine as the home
installation, but must be accessible by the Content Server.

Images and other objects that must be referenced by HTML pages must reside
somewhere in the <home> /weblayout/ directory (which is accessible by the
web server).

Consistent File Structure

To keep your custom components organized, we recommend keeping a
consistent file structure that emulates the Content Server <home>/shared/
config/ directory. To accomplish this, create three sub-directoriesin the
component directory:

Programmer’s Reference Guide

Understanding Component Architecture

» resources for holding resource files
» templated for holding template files
 reports/ for holding report files

Place the component resource definition HDA file, at the top-level of your
component directory. When referencing files within these directories, use
relative path names. This makesit easier for you to move your component to a
different location without having to edit all of the filesin the component.

For example, use templates/'templates.hda to reference atemplates.hdafilein
the my_component/templates/ directory, instead of c./my_component/
templates/templates.hda. This example shows that type of reference:

@Resul t Set ResourceDefinition
4

type

filenane

tabl es

| oadOr der

tenpl ate

tenpl ates/test _tenpl ate. hda
nul |

1

@nd

@ Note: The Content Server is a Java-based application. Forward slashes must be
used in the pathnames.

Naming Conventions

In the event that you have multiple components installed, and the components
share acommon file name (for example, ny_r esour ce. ht n) the definition for
the component that is loaded last will take precedence.

There are certain naming conventions that are recommended for devel oping
custom components. These recommendations extend to the directories,
individual files and the contents of those files.

Programmer’s Reference Guide 2-15

Understanding Component Architecture

2-16

Use Unique File Names

It is recommended that you give al of your component directories and files
unique and meaningful names. A common convention used with creating file
namesisto place the prefix custom _in front of the original filename. Itisalso a
preventative step for avoiding conflict among multiple components.

Use Appropriate File Name Extensions

HTM files should have an HTM extension and HDA files should have an HDA
extension. If you are creating the file with atext editor like WordPad, place the
file name within quotation marks so the proper file extension will be assigned to
it (for example," nyfi | e. hda"). Failure to use quotation marks to define the
filemay resultinafilenamesuchasnyfil e. hda. t xt .

Use Consistent Naming Conventions

Be consistent with your naming conventions. For example, if you are modifying
the standard query template (std_query.htm), it is recommended that you use a
naming convention like custom_query.htm for your modifications. This practice
isatwo-fold solution: you do not overwrite any default templates and your
customizations are easy to categorize and identify.

Observe Case

The Content Server is case sensitive even if your file system is not. For
example, when atemplate name is defined as My _Tenpl at e, the Content
Server will not recognize case variationssuchasny _t enpl ate or
MY_TEMPLATE.

Change Form Methods

HTML forms have amethod that is used to communicate the form data to the
web server. Change the METHOD attribute of any FORM from a POST to a
GET. Thiswill enable you to see all of the parameters as they are passed from a
web browser to the web server, filtered through the Content Server and then
back to the web browser. To change the form method, you must make an entry
in your form'sHTML code with the METHOD=" GET" command.

Programmer’s Reference Guide

Understanding Component Architecture

Read Server Errors

When devel oping components, there are a number of problems that can arise.
For example, you may have made a mistake somewhere in your files or the
Content Server detects something wrong with one or more of your files, such as
an extra carriage return or character: this can cause the server to fail to load a
file. If the server fails, it will report the error via the command prompt window
(on Windows NT) or to alog file (on UNIX).

Getting to that information is important to helping you resolve the problem.
How you get to the information depends on the operating system on which the
server is running.

Using the Content Admin Server page, the server log file can be viewed by
selecting the content server, and then clicking the View Server Output link.

Programmer’s Reference Guide 2-17

Understanding Component
Assembly

Overview

Component Architecture enabl es customizations to be made to the product
without modifying the original sourcefiles. To understand what happenswhen a
custom component is loaded, we must take a high-level view of the Content
Server's behavior and then determine the additional processes.

Page Assembly

When arequest is received from aweb browser client for a dynamic page, the
server performs a specific set of actionsto deliver that page. These actions
assembl e template pages into the final displayed page. Each page provides
specific markup for the final displayed page and has a specific place in thefina
page.

Programmer’s Reference Guide 3-1

Understanding Component Assembly

3-2

Resource types can be any of the following: HTML markup, queriesto gather
information from the database, and special code to conditionally format the
information. Each assembled page has three standard conventions and
occasionally some dynamically generated data. Asarule, each page consists of
three resources:

» A standard page header.
» A standard page beginning.
» A standard page ending.

All of these definitions are cached in memory. When the server gets a request
for apage, it already has a definition for the pieces that appear on the page. The
server combines many elements together into atemplate that is ready to be
processed for a specific data request by the client. After the Content Server has
been started and loaded all of the resource information into the memory, it waits
for requests from clients.

Sincethisisthe standard software behavior whenever you define new resources,
templates, or reports, you must restart the server. If you have made a change,
but the change does not appear to have taken affect, restart the server.

Programmer’s Reference Guide

Understanding Component Assembly

Server Start Up Actions

All the template pages in the Content Server are pre-parsed and cached. When
the Content Server starts, it reads the main templates table file templates.hda.
This table describes each template and points to the corresponding HTML
template file. The HTML template file is read and some of the HTML server
side scripts are resolved immediately. The resulting template page is then stored
in memory to speed up page presentation.

The following general steps occur when the server starts:
* Internal initialization occurs.

e Configuration variables load.

e Standard resources, templates, and reports load.

e Custom components load.

Internal Initialization Occurs

When the server initializes internally, the Java class files from the Content
Server are read and the Java Virtual machine is evoked.

Configuration Variabl es Load

After initializing, the Content Server locates the file name <hone>/

config. cfg. The config.cfg file stores the system properties and default
configuration variables. The configuration file consists of a number of name/
value pairs.

The value assigned to each variable can be displayed in any specified template,
by using Idoc Script substitution. For example, if you want to display the
variable Master_on_secondserver, you could place the Idoc Script command
<$lnstanceDescription$> within atempl ate file.

Theinformation contained within the configuration file was supplied during the
Content Server installation process.

Programmer’s Reference Guide 3-3

Understanding Component Assembly

3-4

Standard Resources, Templates, and Reports Load

There are number of resources, templates, and reports that need to be loaded for
the Content Server to function properly. A number of these files are located in
the following directories:

e <home>/shared/config/templates/
» <home>/shared/config/resources/
» <home>/shared/config/reports/

For the server to know which filesto load, it reads the entries made in afile
located at: <home>/shared/config/templates'templates.hda. The templates.hda
file notifies the Content Server to load specific default templates.All of these
template files are stored in the directory <home>/shared/config/templates/ and
are the pages that make up the Content Server web site.

Custom Components Load

The Content Server loads any custom components last. The Content Server
locates the file named <home>/config/components.hda. The Content Server
then searches for references to any componentsthat might be enabled. Thisisan
example of the components.hdafile:

@Resul t Set Conponent s

2

nane

| ocation

My Conponent

C./stellent/custon ny_conponent/my_conponent. hda
@nd

In this example, the information contained within the components.hda file
directs the Content Server to the component definition file named
my_component.hda. The component definition file contains location references
to any new resources that have been defined.

Programmer’s Reference Guide

Understanding Component Assembly

Merge Rules

When developing custom components, the custom template files are referenced
by creating a component definition file named MergeRules. The MergeRules
table forces the Content Server to perform a comparison check on the name of
your table by the template page column table.

» If the name of your custom template page column matches the name of the
default template page column, your custom template will overwrite the
existing default template.

» If your custom template page name does not match any of the default
template page column names, your file will be appended to the templates
available in the <home>/shared/config/templates/ templates.hdafile.

Component Architecture Process

Component architecture involves avariety of processes and include these steps:
1. Making copies of some of the standard templates.
2. Modifying those templates to meet your specifications.

3. Creating a ResourceDefinition table in the component definition HDA file
(this may or may not contain MergeRules).

4, Making areference in the components.hdafile to the name and location of
your component.

Components File

The components.hda file is located in the directory <home>/config/ and serves
as the ultimate location where your custom component’s name and location are
referenced. The components.hda file contains a result set name Components.
Thisis an example of the file structure;

@Resul t Set Conponent s
2

nane

| ocation

@nd

Programmer’s Reference Guide 3-5

Understanding Component Assembly

3-6

Once you have defined a component, you will reference the component by
making an entry into the Components ResultSet that contains information about
the name and location of your custom component. An absol ute path can be used
when specifying the location of your component or arelative path relative to the
Content Server home directory.

Component Definition File

The component definition HDA fileisthe portion of your component that points
to any custom resources that you have defined and, if applicable, defines any
accompanying MergeRules. Thisis an example of the general structure for the
component definition HDA file:

@Resul t Set ResourceDefinition

4

type

filenane

tabl es

| oadOr der

@nd

Once you have modified copies of the standard templates reference these
changes in the ResourceDefinition ResultSet.

Modifying Resources

After making changes to graphic imagesin your copy of the file <home>/
sglbalrsd/config /std_page.htm, you must make an entry in the ResourceDefinition
t .

@Resul t Set ResourceDefinition

4

type

filenane

tabl es

| oadCr der

resource

resources/ nmy_std_page. htm

nul |

1

@nd

Programmer’s Reference Guide

Understanding Component Assembly

After making an entry into the components.hdafile, the file should be saved and
the server stopped and restarted to implement the changes.

Modifying Standard Templates

Follow these steps to modify the standard templates:

1. Makeacopy of the templates you intend to modify and a copy of the file
templates.hda and place them into the component templates/ directory.

2. Within the templates.hdafile, rename the ResultSet IntradocTemplates to
something descriptive, such as MyTemplates.

3. Deleeal entries for the template names that you are not modifying, along
with the ResultSets V erity Templates and SearchResultsTemplates.

4. Updatethe reference to the template name that isimplemented by default to
the name of your custom template.

@ Note: Spaces can not be used in the table name.

@esul t Set MyTenpl at es
5

nane

cl ass

formtype

filenanme

description

HOVE_PACGE

Root Page

HonePage
ny_std_home_page. ht m
Cust om Hore page for webl ayout
CHECKI N_NEW FORM
Docunent

Checki nForm

ny_checki n_new. htm

Programmer’s Reference Guide 3-7

Understanding Component Assembly

Cust om New Docunent Check in Form
CHECKI N_SEL_FORM

Docunent

Checki nForm

ny_checkin_sel . htm

Cust om Document Check in Form
DOC_I NFO

Docunent

Docunent | nf oForm

ny_doc_i nfo. htm

Cust om Docunent | nformation Form
STANDARD_QUERY_PAGE

Sear ch

Quer yPage

ny_std_query. htm

Cust om Document Search Form
UPDATE_DOC | NFO

Docunent

Updat eDocl nf oFor m

ny_updat e_doci nfo. htm

Cust om Docunent Update Doc Info Form
@nd

3-8 Programmer’s Reference Guide

Understanding Component Assembly

In the ResultSet ResourceDefinition, make a reference to the templates.hda file
that you modified and then create a ResultSet MergeRules. In this example, the
templates.hda file has been renamed to mytemplates.hda and stored the file to
the path ¢:/MyComponent templates/. Also, the ResultSet in the
mytemplates.hda file has been renamed to MyTemplates.

@Resul t Set ResourceDefinition
4

type

filenane

tabl es

| oadCr der

tenpl ate

tenpl at es/ nyt enpl at es. hda
MyTenpl at es

1

@nd

@esul t Set MergeRul es

3

fronirabl e

toTabl e

col um

MyTenpl at es

I ntradocTenpl at es

nane

@nd

Itisnot necessary to separately define the new resources that have been defined.
By making reference to the mytemplates.hdafile, the system has already been
instructed which templates (HTM files) to merge into the ResultSet
IntradocTemplates. The references made to templates such as

my_std home_page.htm will be automatically detected when the server starts
up and the mergeis performed.

After making an entry into the components.hdafile, the file should be saved and
the server stopped and restarted to implement the changes.

Programmer’s Reference Guide 3-9

Understanding Component Assembly

3-10

Defining Custom Environment Resources

Create atext file at the top level of your component that has afile extension .cfg.
Thisfile should be defined in the ResourceDefinition table and implemented by
making a reference to the component that contains the environment resourcein
the components.hdafile.

In this example, assume that we have opened the file my_environment.cfg and
defined an environment variable.

Cust omer =wi se@ nt r anet sol uti ons. com
TheneCol or =r ose

To reference your environmental variablesin copies of the templates to be
modified, you will use an Idoc Script tag, such as <$Customer$> or
<$ThemeColor$>. A reference in the components.hda file must be made for
your changes to be implemented. Thisis an example of an entry in the
ResourceDefinition ResultSet:

@Resul t Set ResourceDefinition
4

type

filenane

tabl es

| oadOr der

envi r onment

resour ces/ my_environment. cfg
nul |

1

@nd

Defining Custom Queries

To create a custom query, the process is much the same as creating a custom
template. However, you will have to make a copy of the query.htm resourcefile,
placeit into the component resources file and modify the table entry to suit your
purposes. The structure of the Query Table isthat it has three columns with the
following names: labels, queryStr, and parameters.

Programmer’s Reference Guide

Understanding Component Assembly

The HTM format of the file looks similar to the following code:
<HTM.>
<HEAD>

<META HTTP- EQUI V=" Content - Type’ content="text/htm ;
charset =i so- 8859- 1" >

<TI TLE>Cust om Query Definition Resources</TI TLE>
</ HEAD>

<BODY>

<@abl e MyQueries@

<t abl e bor der=1><capti on>Cust om Query Definition
Tabl e</ strong></ capti on>

<tr>

<t d>name</t d><t d>querySt r </ t d><t d>par anet er s</t d>
</tr>
<tr>

<td>lreport</td>

<td>i nsert into Reports (dReportNane, dProject,
dDescription) values (?, ?, ?)</td>

<t d>dReport Narre var char
dProj ect varchar
dDescri ption varchar
</td>
<[tr>
<tr>
<td>Qreports</td>
<td>sel ect * from Reports</td>
<t d>
</td>
</tr>
</tabl e>
<@nd@
</ BODY>
</ HTM.>

Programmer’s Reference Guide 3-11

Understanding Component Assembly

In this instance, you would need to make an entry in the Component definition
HDA file and set a MergeRule. Once completed, the Component definition
HDA filewill look similar to the following:

@Resul t Set ResourceDefinition
4

type

filenane

tabl es

| oadCr der

query

resour ces/ MyQueries. htm
MyQueri es

1

@nd

@Resul t Set MergeRul es

3

fronTabl e

toTabl e

col um

MyQueri es

QueryTabl e

nane

@nd

After making an entry into the components.hda file to reference your file, the
server should be stopped and restarted to implement the changes.

3-12 Programmer’s Reference Guide

Understanding Component Assembly

Defining Custom Services

The process of defining custom servicesis nearly identical to the process of
creating a custom query. The main difference lies in the information that you
must supply within the”.htm” file itself. Make a copy of the file <home>/
shared/config/ resources/std_services.htm and place it into the component
resources/ directory. Make entries into the table definition columns. Name,
Attributes, and Actions.

Thisis an example of the script used to define a custom service named
MyServices:

<HTM_>
<HEAD>

<META HTTP- EQUI V=" Cont ent - Type’ content="text/htm ;
char set =i so- 8859-1' >

<TI TLE>Cust om Scri pt ed Servi ces</ Tl TLE>
</ HEAD>
<BODY>

<@abl e MyServices@

<t abl e border=1><capti on>Scri pts For Custom
Intra. <i>doc!</i> Services

</ strong></ capti on>
<tr>
<t d>Name</td><t d>Attri but es</td><t d>Acti ons</td>
</tr>
<tr>
<t d>ADD_REPORT</t d>
<t d>Servi ce
18
ADD_REPORT_FORM
nul |
nul |

Unabl e to add report.</td>

Programmer’s Reference Guide 3-13

Understanding Component Assembly

<td>2:lreport::0:null</td>
<[tr>
<tr>

<t d>REPORTS_LI| ST</t d>

<t d>Service

17

REPORT LI ST_FORM
nul |

nul |

Unable to retrieve reports.</td>
<td>5: Qreports: REPORT_LIST: 0: nul | </t d>

</tr>

</tabl e>

<@nd@

<pr >

</ BODY>

</ HTML>

3-14 Programmer’s Reference Guide

Understanding Component Assembly

The method of having the custom service recognized is by creating a reference
to your custom file in the ResourceDefinition ResultSet and by creating a
MergeRule that merges MyServices with the Servicestable. Thisis an example
of the associated Component definition HDA file:

@Resul t Set ResourceDefinition
4

type

filenane

tabl es

| oadCr der

service

resour ces/ MyServi ces. htm
MyServi ces

1

@nd

@esul t Set MergeRul es

3

fronTabl e

toTabl e

col um

MyServi ces

Servi ces

nane

@nd

Programmer’s Reference Guide 3-15

Understanding Resource Types

Overview

Resources play many roles within the Content Server environment. Resources

can be snippets of HTML code, dynamic page elements, HDA fileswithin HTM
table, queries that gather information data from the database, or special code to
conditionally format specific information. Since resources are a critical part of

the software, it is essential to be familiar with them. Each resource type hasits
own purpose, structure, and application.

Resources fall into seven distinct categories:
e HTML Include

» Static Table (HTML format)

e Dynamic Table (HDA format)

* Query

* Service

e Template

» Environment

Programmer’s Reference Guide 4-1

Understanding Resource Types

HTML Include

4-2

Thisisaresource type and part of an HTM filethat is used to defined the pieces
of HTML markup that normally appear in more than one template or report file.
The standard HTML includes are defined in the <home>/shared/config/
resources/std_page.htm file

An example of one such resource is <@dynamichtml std _page begin>. This
particular convention is used during the page assembly process for dynamic
pages. Thisresource is defined in the <home>/shared/config/resources/
std_page.htm file and defines the layout for how any standard page will begin.
Thisis a script sample from the std_page.htm file:

<@lynani chtml std_page_begi n@
<$i f not coreContentnly$>

<t abl e border=0 cel | paddi ng=0 cel | spaci ng=0 wi dt h="100%
hei ght =" 100% >

<tr>
<l-- sidebar for nav links -->

<td wi dt h=<$pne_nav_wi dt h$> val i gn=t op><$i ncl ude
pne_nav_|inks$></t d>

<I--Qverall page table with | ogo and head banner -->

<$i f wi dePage$>
<$St dPageW dt h=550$><%el se$><$St dPageW dt h=500$><$endi f $>

<td valign="top"><tabl e border=0 cell spaci ng=0 cel | paddi ng=0
wi dt h="100% >

<tr>
<l-- top banner -->

<td col span=3 valign="top" align="left" height=1
wi dt h="100% bgcol or="<$banner _top_col or $>">

<img src= "<$H t pl magesRoot $> <$banner _t op_i nage$>"
align="top" border="0"alt="Top banner |ogo."></td>
</tr>

<@nd@

Programmer’s Reference Guide

Understanding Resource Types

Any dynamic Include isreferenced in an appropriate template file by using Idoc
Script:

<$i ncl ude std_page_begi n$>

Programmer’s Reference Guide 4-3

Understanding Resource Types

Dynamic Table

The dynamic table is aresource type with the HDA file format. These resource
types are used to define tables that will be used to communicate with the
Content Server during the page assembly process. Thisis an example of a
Dynamic Table resource:

@Resul t Set ResourceDefinition
4

type

filenane

tabl es

| oadCr der

service

resour ces/ previ ew service. ht m
previ ew_Services

1

query

resour ces/ previ ew _query. htm
previ ew Queries

1

tenpl ate

tenpl at es/ previ ew_tenpl at e. hda
nul

1

resource

resour ces/ previ ew resource. ht m
nul

1

@nd

Programmer’s Reference Guide

Understanding Resource Types

Query

The query resource is atablethat definesthelocation of an HTM file containing
the definition of database queries. The Content Server reads the default queries
defined in the system from the file <home>/config/shared/resources/query.htm.
Services that generate pages use queries to get datato merge into the template

pages.
A gquery .htm file can be opened in aWeb browser or in atext editor. The

information is presented in tabul ar form when opened in abrowser, and as script
with html tags and Idoc Script when opened in atext editor.

® Important: Using an HTML editor inits graphical mode may cause Idoc Script tags
to be converted into a string of charactersthat will no longer be recognized by the
Content Server.

Programmer’s Reference Guide 4-5

Understanding Resource Types

Service

4-6

The service type resource defines the location of an HTM file containing the
definitions of service scripts. The standard service file islocated at <home>/
shared/config/resources/std_services.htm.

An IdcService is a defined function or procedure that can be performed within
the Content Server. Since a service is a mechanism for interacting with the
Content Server and consequently the database, any program or HTML page that
requests information from the server or performs a function must use these
services.

The service type resource is discrete and may require parameters. Services are
also the only way aclient can talk to the server or access the database. Services
are, in fact, the only way user-initiated functionality isimplemented. Thisis
because the service is acall that could happen from either the client or server
side.

By having both server and client execute the same service, we ensure integrity
in the system. Everyone eventually does the same thing, even if they start from
completely different places. So if abrowser requests all the usersin the system,
it will perform the same service asthe applet that requests all users. Servicesare
of primary importance when creating custom components to change server
behavior.

A .htm file can be opened in a Web browser or in atext editor. The information
is presented in tabular form when opened in a browser, and as script with html
tags and Idoc Script when opened in atext editor.

Important: Usingan HTML editor initsgraphical mode may cause Idoc Script tags
to be converted into a string of characters that will no longer be recognized by the
Content Server.

Programmer’s Reference Guide

Understanding Resource Types

Template

A template type defines the location of an HDA file. This HDA file contains a
table describing the names, types, and locations of template files that should be
loaded as part of this component.

An example of such afile can be found at the following location: <home>/
shared/config/ templates'templates.hda. This file holds the default templates
loaded by the system.

The templates.hda file defines three tables:
» The IntradocTemplates table contains the full list of cached template files.

» The VerityTemplates table contains the results templates used by the Verity
search script engine.

» The SearchResultTemplates table contains the search results pages
implemented by the Content Server.

Programmer’s Reference Guide 4-7

Understanding Resource Types

Environment

4-8

The environment resource type defines the location of afile with a .cfg
extension that enables a component to define its own configuration. An
environment resource file contains name/value pairs (using the same format as
the config.cfg file) and isloaded after the config.cfg fileisloaded.

Thisis an example of the entries found in an environment resource file located
in the directory <home>/admin/config.cfg. The information contained in this
filewill be different with each installation

H t pRel ati veWebRoot =/ st el | ent/
Cgi Fi | eNarre=i dc_cgi _i sapi . dl |
Ht t pSer ver Addr ess=t echpubs

| DC+Adm n_Name+t echpubs

#l nternet Variabl es

Programmer’s Reference Guide

Understanding HDA and HTM File Types

Overview

The HDA and HTM file types are used extensively when performing custom
component devel opment with the Content Server. Both the HDA and HTM files
types present tabular information. HDA files present tabular datain asimple
structured ASCI|I file format. The HDA file format is very useful for dynamic
data. The compact size and simple format of HDA files make data
communication faster and easier for the Content Server.

HTM tables are useful for storing information as tabular data that does not
change often. HTM tables alow resource information files to be displayed
properly in aweb browser.

Because there are a variety of external filesthat are gathered to deliver
information to the user, a number of resources types are used. The resource
types queries and services use the HTM file format to communicate with the
Content Server. These resource types use the HDA format to get information to
and from the server: environment, template, resource, and dynamic tables.

Programmer’s Reference Guide 5-1

Understanding HDA and HTM File Types

HDA File Type

5-2

An HDA (hyper data) fileis astructured ASCI| text file. Thisfileformat is
designed to be compact to improve network communication. In addition, HDA
files alow for persistent storage. This provides the ability to maintain
consistency after the application reads in data and writes out any changes. The
system creates severa files specifically for this purpose. HDA files are used to
define custom components that are added to Content Server. The types of
resources that use HDA files are: HTML includes, environment, dynamic
resource tables, and templates. There are two section types of an HDA file used
during the customization process: Properties and ResultSets.

HDA File Structure

An HDA file contains sections that begin with @SectionType and end with
@end. The two main section typesin an HDA files created by the system are:
@Properties and @ResultSet. When creating custom components, the ResultSet
section typeis primarily used.

Section Types

An HDA fileisdivided into two tagged sections of the form:

@sectionType sectionnane
. Section data

@nd
There are only two section types that are relevant to Component Architecture

development: @Properties and @ResultSet. All other section tags are for
internal application use only.

Note: None of the section types are mandatory and can be deleted if they are not
being used.

Purpose

The purpose of the HDA fileisto store data and communicate with the Content
Server when arequest for a Content Server service is made. Servicerequest data
is comprised of name/value pairsthat are defined in the properties section of the
HDA file named LocalData. When using applets to make a service request, the
data existsin the form of a ResultSet.

Programmer’s Reference Guide

Understanding HDA and HTM File Types

HDA Section Type: @Properties

The @Properties section of an HDA file consists of a set of name/value pairs
(for example, IsJava=1) separated by carriage return line feeds. This section
type begins with @Properties name and ends with the syntax @end.

For custom component creation, the only valid name for a Properties section is
LocalData. Thisis because the name/value pairs are only valid for the current
HDA file. The Local Data section refers to data specific to this particular file.

Structure

A Properties section has the following structure:
@roperties Local Data
propertyl nane=propertyl val ue
property2 nane=property2 val ue

propertyn_nane=properlyn_val ue
@nd

Thereisno comment escape character for the Properties section of an HDA file.
However, you can place commentsin thefile either before the start of the
Properties section (@Properties) or after the end of the Properties section

(@end).

An example of a Properties section isthe index.hdafile, located at <home>/
documentation/data/pages/index.hda. Thisis a sample of that file:

@roperties Local Data

PagelLast Changed=952094472723

Locationl nfo=Directory, Public,

I sJava=1

r ef reshSubMoni ker s=

PageUr | =/i ntradoc/ groups/ publ i c/ pages/i ndex. ht m
Last Changed=-1

Tenpl at ePage=DI RECTORY_PAGE

| dcSer vi ce=PAGE_HANDLER

Li nkSel ect edl ndex=0

Programmer’s Reference Guide 5-3

Understanding HDA and HTM File Types

5-4

PageNane=i ndex

Header Text =This is a sanple page. The Page Name nust renain
i ndex. The Page Properties for this index page should be
cust oni zed.

PageFunct i on=SavePage

dSecurityG oup=Public

restrictByG oup=1

PageType=Di rectory

PageTitl e=Stel |l ent Content Server |ndex Page
@nd

The LocalData consists of name/value pairs. Thisinformation is only
maintained during the lifetime of the request and response. Unlike information
about the server environment, which rarely changes, the information for each
request is dynamic. From the point of view of an HTTP request, theinitia
LocalDataiscollected fromthe REQUEST METHOD, CONTENT_LENGTH,
and QUERY _STRING HTTP environment variables. Asthe service request is
processed, the values in the Local Data section will be added and changed.

HDA Section Type: @ResultSet

The @ResultSet section of an HDA file consists of a data representation of the
results of a database query. ResultSets include serialized HDA tables.

These steps describe the page assembly process:

» Information isretrieved from the std_page begin, std_page end, and
std_header_sections.

» Thedatabase is queried and the results are returned.
» Thereturned information is merged to complete the final page.

» A ResultSet becomes active during a loop of a page merge. The active
ResultSet take precedence over any other ResultSets during a value search.

The @ResultSet section holds a definition of atable with the number of
columns on the first line, the names of the columns on the next lines and the
actual row values in the same order as the columns on the last lines.

Programmer’s Reference Guide

Understanding HDA and HTM File Types

A ResultSet section begins with @ResultSet name and ends with the @end tag.
This section enables you to define columns and rows of data (atable) when
creating components. Unlike a Properties section, a ResultSet name is not
limited to asingle value. The ResultSet can be given any name. However,
certain names used by the Content Server are reserved.

This table lists some of the standard ResultSet names that have significanceto

the Content Server:

ResultSet Name Significance

Components Thisfile contains references to the name and
location of any components you may have
created.

I ntradocReports Thisfile contains information about any reports
that have been defined in the system.

IntradocTemplates Thisfile holds al of the default templates for
the system. Do not overwrite thisfile.

ResourceDefinition Thisfile contains information about any
components that you might create.

SearchResultsTemplates | Thisfile holdsinformation about any custom
templates created for returning SearchResultsto
the browser.

There is no comment character for a ResultSet section of an HDA file. Blank
lines must not be left between the start of a section (@ResultSet) and the
corresponding end of the section (@end). Blank lines and text can only be used
between sections.

@ Note: An HDA fileisnot web viewable.

Programmer’s Reference Guide 5-5

Understanding HDA and HTM File Types

Structure

A ResultSet provides the ability to define columns and rows of data. After the
@ResultSet name, the number of columns that the serialized table will contain
islisted. The names of each of the columns with one column name per line are
then listed. Each row of the table is then defined, one column at atime, with
each column value appearing on a separate line. Thisis an example of thefile
structure for a ResultSet that has n columns and m rows:

@Resul t Set nane
n

col um1l- nare
col uma2- nane

col umn- nane
rowl- col utm1l-val ue
rowl- col umz2-val ue

r owl- col utmmn-val ue
r ow2- col uml-val ue
r ow2- col umz2- val ue

r ow2- col umn- val ue
rowm col um1-val ue

r owm col utma2-val ue

r owm col umn- val ue
@nd

5-6 Programmer’s Reference Guide

Understanding HDA and HTM File Types

Sample ResultSet

This sample depicts a ResultSet named scores. It contains four columns: name,
gamel, game2, and game3. There are four sets of data for this ResultSet:

name gamel game2 game3

Jm 187 145 154

Joe 125 167 121

John 134 134 123

Sam 125 114 133

@Resul t Set scores
4
name
ganel
gane2
gane3
Jim
187
145
154
Joe
125
167
121
John
134
134
123
Sam
125
114
133
@nd

Programmer’s Reference Guide 5-7

Understanding HDA and HTM File Types

Data Binder

The Content Server stores a service request internally in a Data Binder. The
Data Binder manages information and organizesit into these distinct categories:

e LocaData
e ResultSets
e Environment

The Data Binder differentiates between active and non-active ResultSets during
the creation of an HTML page. The Data Binder categories are used to group
data to determine where the data came from and how it was created. This
enables the system to determine such things as search precedence when looking
up avalue.

By default, when trying to evaluate the substitution of alookup key, the datain
the request is evaluated in the following order:

1. LocaData
2. Active ResultSets
3. All other ResultSets
4. Environment
@ Note: This precedence can be changed using Idoc Script functions.
An HDA fileisaserialized Data Binder and is used for both communication
and data representation. The @Properties Local Data category mapsto the

Loca Data of the Data Binder and the @ResultSet category maps to a named
result in the Data Binder.

5-8 Programmer’s Reference Guide

Understanding HDA and HTM File Types

HTM File Type

AnHTM fileisan HTML file type, but isnot an HTML document. The
differenceisthat an HTML fileisready for viewing in aweb browser, but an
HTM fileis not. A number of HTM files are found in these directories:

» <home>/shared/config/templates/

» <home>/shared/config/reports/

» <home>/shared/config/resources/

There are three types of HTM files within the Content Server:
e templates

* reports

* resources

Templates and Reports

Templates and reports deliver a web page during the page assembly process.
However, an HTM file contains alarge amount of script that has not been
resolved by the Content Server and will remain unresolved until the final pageis
assembled. These HTM files are template files, not displayable HTML files.

Resources

Resources play a variety of roles within the system. Generally, they are used to
present information displayed as aweb page in a browser.

HTM Tables

The HTM format is another type of table used by the Content Server. An HTM
table isvery similar to the HDA format, except that it usesHTML tabletagsto
layout the format. This enables the resource filesto be displayed properly in a

web browser.

Programmer’s Reference Guide 5-9

Understanding HDA and HTM File Types

5-10

Structure

A table, or ResultSet, inan HTM file begins with < @table name@> and ends
with <@end@>. Between the start and end markup tagsis an HTML table.
Unlike a ResultSet in an HDA file, the number of columns do not need to be
specified. Thisisimplied by the table markup.

Like an HDA file ResultSet, the column names in the first table row are listed
first. The datafor each row of the table follows. HTML comments are allowed
withinthe table. The HTML style attribute can be used to format the contentsto
improve the presentation of the datain aweb browser.

Thisisan example of the structure of aResultSetinan HTM file. The ResultSet
has n columns and m rows.

<@ abl e Tabl eNanre@
<t abl e border=1>
<caption>Tabl e Descri ption</caption>
<tr>
<t d>Col umNanel1</t d>
<t d>Col umNane2</ t d>

<t d>Col umNanen</t d>
</tr>
<tr>
<t d>RowlCol utmVal uel</t d>
<t d>RowlCol umVal ue2</t d>

<t d>RowlCol utmVal uen</t d>
</tr>
<tr>
<t d>Row2Col utmVal uel</t d>
<t d>Row2Col umVal ue2</t d>

<t d>Row2Col umVal uen</t d>
<[tr>

Programmer’s Reference Guide

Understanding HDA and HTM File Types

<tr>
<t d>RownCol umVal uel</t d>
<t d>RownCol umVal ue2</t d>

<t d>RownCol umVal uen</t d>
</tr>
</tabl e>
<@nd@
Note: Any HTML syntax that does not define the data structure is ignored when the
@ tableisloaded. For example, all the <td> tags can use any of their options (such as
alignment or spacing) and the title can be formatted to taste. The HTM format is

useful for resources that are read in and parsed by an application but are never
changed except through manual editing.

Dynamic Content Resources

Dynamic content resources are HTML markup that is used in more than one
template or report file. This dynamic content consists of the resources that
assemble the HTML page. These resources are defined in the <home>/shared/
config/resources/ std_page.htm file.

Structure

Dynamic resources begin with the tag < @dynamichtml name@> and end with
the tag < @end@>. The name of the resource is how the HTML markup is
referenced in template and report HTM files. To reference atemplate or report,
the HTM file contains an include statement. For example: <$include name$>.
The variable name is the information to be included in the file. There are three
pieces of dynamic content that are a part of almost every page in the Content
Server web site. These are defined in the std_page.htm file:

« body_def

» std_page begin
» std page end

Programmer’s Reference Guide 5-11

Understanding HDA and HTM File Types

5-12

These items are included in page templates by using the following markup
<$include body_def$> <$include std_page_begin$>, and <$include
std_page_end$>, respectively.

Body Definition

The body definition (BODY element) appears on almost every pagein a
Content Server web site. The body element definition sets the page background
color, the color of hyperlinks, and the background image.

For example:
<@ynami chtml body_def @
<!l --Background i mage defined as part of body tag--->
<body
<$i f background_i mge$>
backgr ound="<$Ht t pl nagesRoot $><$backgr ound_i nage$>"
<$el sei f col or Backgr ound$>
bgcol or =" <$col or Backgr ound$>"
<$endi f $>
I'i nk="#663399" vl ink="#CC9900"

<$i f noBackgroundl ndent $>mar gi nwi dt h="0" mar gi nhei ght ="0"
topmar gi n="0" | ef t mar gi n="0"<$el se$>t opnar gi n="10"
| ef t mar gi n="10"

<$endi f $>
>

<@nd@

Page Begin

This example demonstrates how most pages begin in a Content Server web site.
By examining the source script, it can be determined that most of the page
content isinserted into atable. This table includes several rows and columns
that alow space for the sidebar and its links, space for the logo, and any
additional content. Thisisthe code for the std_page begin resource:

<@lynani chtml std_page_begi n@

<$i f not coreContentnly$>

Programmer’s Reference Guide

Understanding HDA and HTM File Types

<tabl e border=0 cel | paddi ng=0 cel | spaci ng=0 wi dt h="100%
hei ght =" 100% >

<tr>
<!-- sidebar for nav links -->

<td wi dt h=<$pne_nav_wi dt h$> val i gn=t op><$i ncl ude
pne_nav_|inks$></t d>

<I--Qverall page table with |ogo and head banner -->

<$i f wi dePage$>
<$St dPageW dt h=550%$><%el se$><$St dPageW dt h=500$><$endi f $>

<td valign="top"><tabl e border=0 cel | spaci ng=0 cel | paddi ng=0
wi dt h="100% >

<tr>
<I-- top banner -->

<td col span=3 valign="top" align="left" height=1 w dth="100%
bgcol or =" <$banner _t op_col or $>">

<img src= "<$Ht t pl magesRoot $> <$banner top_i mage$>"
align="top" border="0"alt="Top banner |ogo."></td>

</tr>

<tr>

<td col span=3 hei ght =20> <! --vertical spacer--></td>
</tr>

<tr>

<I'-- horizontal spacer -->

<td wi dt h=10><i ng src="<$Ht t pl magesRoot $>space. gi f" alt=
wi dt h=10></t d>

<l-- purple nav bar -->
<td valign="top" align="right" valign="ni ddl e">

<ing src="<$H t pl mgesRoot $>header _curve. gi f" w dt h=12 hei ght =24
bor der =0>

</td>

<td bgcol or="#993399" valign="nmddl e" align="left" w dth="100%
nowr ap>

 &bsp; &bsp

Programmer’s Reference Guide 5-13

Understanding HDA and HTM File Types

5-14

<a cl ass=header Nav href="javascript: history. back()"> Back</
a> | &bsp; <$i f i sTrue(#env. | sProxi edServer) $>

<a cl ass=header Nav href ="<$Ht t pEnt er pri seCgi Pat h$>
?1 dcServi ce=GET_DOC_PAGE&Act i on=CGet Tenpl at ePage&Page=HOVE_PAGE">
Honme</ a> | &bsp;

<a cl ass=header Nav href ="<$Ht t pCgi Pat h$>
| dcServi ce=CET_DOC_PAGE&Act i on= Get Tenpl at ePage&Page=HOVE_PACE" >
<$#env. | nst anceMenuLabel $></ a> | &bsp;

<$el se$>

<a cl ass=header Navhr ef =" <$Ht t pCgi Pat h$>
?1 dcServi ce=GET_DOC_PAGE&Act i on= Get Tenpl at ePage&Page=HOVE_PAGE" >
Home</ a> | &bsp;

<$endi f $>

<a cl ass=header Nav
href =" <$Ht t pCgi Pat h$>?I dcSer vi ce=GET_DYNAM C_PACGE&PageNanme=i ndex"
>Li brary</ a> &bsp; | &bsp;

<a cl ass=header Nav
href =" <$Ht t pCgi Pat h$>?<$st r Tri mAs(i nc(’ std_query_page_link_args’)
) $>II

>Sear ch</ a> &bsp; | &bsp;

<a cl ass=header Nav href="<$Ht t pHel pRoot $>def aul t . ht nf
target="IntradocHel p">Hel p</ a>

 &bsp;
</ span>

</td>

<[tr>

</tabl e>

<$endi f $>

<I--Qverall table row which contains sidebar and dynamic listing
of folders and docunments (main display area) -->

<t abl e border=0 w dt h=<$St dPageW dt h$> bor der=0 cel | spaci ng=0
cel | paddi ng=0>

<tr>

<td rowspan=1000 wi dt h=15><i ngy
src="<$Ht t pl magesRoot $>space. gi f" alt="" w dt h=15></td>

<[tr>

Programmer’s Reference Guide

Understanding HDA and HTM File Types

<tr>
<td hei ght=15><!-- vertical spacer --></td>
</tr>
<tr>

<td wi dt h="<$St dPageW dt h$>" val i gn="top" align="center"
col span=3>

<@nd@

Page End

This example of dynamic content shows how the script in most Content Server
web pages ends. In this definition the table cell (TD element) is closed, the table
row (TR element) is closed, and, the table (TABLE element) is closed.

<@lynamni chtml std_page end@
<I-- new page end -->
<l--Min display area colum end-->

<!--End content table -->
</td>
</[tr>

</t abl e>

Including Dynamic Content in a Template

Thisis an excerpt from the <home> shared/config/templates/admin.htm
template file includes dynamic content in atemplate. Thisinformation is
defined in the <home> shared/config/resources/std_page.htm file as

< @dynamichtml name@> and isincluded in individual template files with the
convention <$include name$>.

This exampl e shows the admin.htm template file:
<! DOCCTYPE HTM. PUBLIC "-//|ETF/ / DTD HTM.// EN'>
<htm >

<head>

Programmer’s Reference Guide 5-15

Understanding HDA and HTM File Types
<$def aul t PageTi t| e="Adni ni stration"$>
<$i nclude std_html head decl arati ons$>
</ head>
<$i ncl ude body_def $>

<$i ncl ude std_page_begi n$>

<$i ncl ude std_header $>

<$i ncl ude std_page_end$>
</div>

</ body>
</htm >

5-16 Programmer’s Reference Guide

Understanding the Component
Definition Hle

Overview

The component definition file is an HDA file that defines specific ResultSets.
These ResultSets define the location of resources and merge information for a
custom component.

There are two types of ResultSets in a component definition file:
* ResourceDefinition
« MergeRules

Programmer’s Reference Guide 6-1

Understanding the Component Definition File

ResourceDefinition

The ResourceDefinition ResultSet is defined in an HDA file and is used by the
Content Server to define the location of the resources that make up a custom
component.

Thisisthe structure of the ResourceDefinition ResultSet:
@Resul t Set ResourceDefinition
4

type

filenane

tabl es

| oadOr der

resourcel-type

resourcel-fil ename
resourcel-tabl es
resourcel-| oadOr der
resource2-type

resource2-fil enane
resource2-tabl es
resour ce2- | oadOr der

resour cen-type
resourcen-fil enane
resourcen-tabl es
resour cen- 1 oadOr der
@nd

6-2 Programmer’s Reference Guide

Understanding the Component Definition File

ResourceDefinition Columns

A ResourceDefinition ResultSet consists of four columns. Each column has an
associated function. These are the ResourceDefinition columns;

+ type

» filename
» tables

» |oadOrder

type

The type column can be one of six resource types. These are the resource types
and the associated functions:

Type Function

Environment Used to define global variables, aswell as
hiding and displaying certain metadata fields.

Dynamic Resource | Used to define dynamic content for HTML

Table pages (HDA tables).

Static Resource Used to define content for HTML pages (HTM
Table tables).

Template Used to define page and report templates.
Query Used to define database queries.

Services Used to define Content Server services.
filename

The filename column is the name of the file that defines a specific resource.
This entry can be an absolute or relative path. To use arelative path the resource
should be located in the appropriate custom component directory:

 resourced directory for aresource type.
» templated directory for a page template.
 reports/ directory for areport template.

Programmer’s Reference Guide 6-3

Understanding the Component Definition File

6-4

For example, this alowsthe use of the relative path templates/mytemplates.hda
instead of the entire file path, c:./<home>/mycomponentshared /templates/
mytempl ates.hda.

tables

The tables column includes al of the ResultSets (tables) that should be loaded
from the resource file. Table names are separated with acomma. If the resource
file does not include ResultSets, this value will be null. Dynamic content
resources do not include table definitions, so a reference to a dynamic content
filewill always use null in the tables column.

loadOrder

The loadOrder column is used to determine the order in which thisresourceis
loaded. If you have more than one resource with the same name, the last
resource loaded is the one used by the system. Normally, set thisto avalue of
one (1).

When the Content Server reads a resource definition, only the environment and
dynamic content resources are actually available for use by the system. To
direct the system to load resources other than environment or dynamic content,
MergeRules must be defined. The MergeRules specify which resources will be
loaded and which specific internal tables they will be loaded into.

Example ResourceDefinition

Thisisan example of a ResourceDefinition. The name, number of columns, and
column names are fixed because this is a ResourceDefinition ResultSet. This
ResourceDefinition defines four resources, one of each type:

Type Filename Tables loadOrder
resource resources/ null 1
My pageresources.
htm
template templates/ MyTemplates 1
mytemplates.hda

Programmer’s Reference Guide

Understanding the Component Definition File

Type Filename Tables loadOrder

query resources/ MyQueries 1
myqueries.htm

service resources/ MyServices 1
myservices.htm

@Resul t Set ResourceDefinition
4

type

filenane

tabl es

| oadCr der

resource

resour ces/ mypager esour ces. htm
nul |

1

tenpl ate

tenpl at es/ nyt enpl at e. hda
MyTenpl at es

1

query

resour ces/ myqueries. htm
MyQueri es

1

service

resour ces/ nmyservices. htm
MyServi ces

1

@nd

Programmer’s Reference Guide 6-5

Understanding the Component Definition File

MergeRules

6-6

Environment and dynamic content resources are available as soon as they are
loaded. However, for all other resources, the system needs to know where to
merge the resource information. Thisis accomplished by creating merge rules.
Merge rules are defined using a MergeRules ResultSet. Since this ResultSet has
the name MergeRules, it comes with a predefined number of columns and
predefined column names. A MergeRules ResultSet has the following structure:

@Resul t Set MergeRul es
3

fronTabl e

toTabl e

col um

ner gerul el-fronTabl e
nergerul el-toTabl e
mer ger ul el- col um
ner ger ul e2-fronTabl e
nergerul e2-toTabl e
mer ger ul e2- col um

ner ger ul en-fronTabl e
mer gerul en-toTabl e
ner ger ul en- col um
@nd

MergeRules Columns

A MergeRules ResultSet consists of three columns. Each column has an
associated function. These are the MergeRules columns:

« fromTable
« toTable
e column

Programmer’s Reference Guide

Understanding the Component Definition File

fromTable

The column fromTable represents a new table that your component has defined
and loaded as part of the ResultSet ResourceDefinition. To properly perform a
merge, the fromTable must have the identical format as the toTable.

In the previous ResourceDefinition example, three tables were |oaded:
MyTemplates, MyQueries, and MyServices. These three tables are now
available for use asafromTable.

toTable

The column toTable is the name of an existing table. Usually, thisis one of the
Content Server internal tables, such as the IntradocTemplates table or
QueryTable table.

column

The column column is the name of the column that Content Server performs a
comparison on for the merge. Usually this value will be name. In some cases,
you may set it to null. Setting the value to null will default to the first column,
which is generally a name column.

For each row of the fromTable, if the content of column is not identical to arow
already inthetoTable, anew row isadded to the toTable and populated with the
data from the row of fromTable. However, if the content of column is identical
to an entry already in the toTable, the row in the toTableis replaced by the row
in the fromTable.

Example MergeRules

In this example, two ResultSets, scores and newscores are defined. An
explanation of merging newscores into scores and of merging scores into
newscores is also provided.

Programmer’s Reference Guide 6-7

Understanding the Component Definition File

Scores

The scores ResultSet has four columns labeled: name, gamel, game2, and
game3. There are four rows of information in the scores ResultSet. The
following figure shows the HDA file representation of scores, aswell asa
tabular representation. Think of the tabular representation as the ResultSet
scores after it has been loaded into memory by the system.

name gamel game2 game3

Jm 187 145 154

Joe 125 167 121

John 134 134 123

Sam 125 114 133

@Resul t Set scores
4
nanme
ganel
gane2
gane3
Jim
187
145
154
Joe
125
167
121
John
134
134
123
Sam
125
114
133

@nd

6-8 Programmer’s Reference Guide

newscores

Understanding the Component Definition File

The newscores ResultSet has the same structure as the scores ResultSet. There
are four columns labeled: gamel, game2, and game3. There are three rows of
data in ResultSet newscores. This example shows the HDA file representation
of the newscores ResultSet, aswell as atabular representation of the data. Think
of the tabular representation as the ResultSet newscores after it has been loaded
into memory by the system.

name

gamel

game2

game3

Andy

238

220

237

Ken

165

148

145

Jm

178

183

162

@Resul t Set scores
4
nane
ganel
gane2
gane3
Andy
238
220
237
Ken
165
148
145
Jim
178
183
162
@nd

Programmer’s Reference Guide

6-9

Understanding the Component Definition File

6-10

Merging newscores into scores

Thefirst mergeto occur isdefined in the ResultSet M ergeRul es of the following
figure. The fromTable is defined as newscores, and the toTable is defined as
scores. The column on which to merge is name.

» Thisfigure shows that the three rows of newscores are merged into the four
rows of scores. The result isthe scores ResultSet is given six total rows.
Row-by-row, the merge happens as follows:

» Thenewscoresrow named Andy isnot present in scores, therefore, the entire
row is appended to scores.

» The newscoresrow named Ken is not present in scores, therefore, the entire
row is appended to scores.

» The newscoresrow named Jimis present in scores, the old row named Jimis

replaced with the contents of the newscores row named Jim.

name gamel game2 game3
Jm 178 183 162
Joe 125 167 121
John 134 134 123
Sam 125 114 133

Andy 238 220 237
Ken 165 148 145

@Resul t Set MergeRul es
3

fronTabl e

t oCol um

newscor es

scores

nane

@nd

Programmer’s Reference Guide

Understanding the Component Definition File

Merging scores into newscores

The second merge to occur is defined in the ResultSet MergeRules of the
following figure. The fromTable is defined as scores, and the toTableis defined
as newscores. The column on which to mergeis name.

Thisfigure shows that the four rows of scores are merged into the three rows of
newscores. The result is the newscores ResultSet is given six total rows. Row-
by-row, the merge happens as follows:

» Thescoresrow named Jim is present in newscores, therefore old row named
Jim isreplaced with the contents of the scores row named Jim.

» The scoresrow named Joeis not present in newscores, therefore the entire
row is appended to newscores.

» The scores row named John is not present in newscores, therefore the entire
row is appended to newscores.

» The scores row named Sam is not present in newscor es, therefore the entire
row is appended to newscores.

name gamel game2 game3
Andy 238 220 237
Ken 165 148 145
Jm 187 145 154
Joe 125 167 121
John 134 134 123
Sam 125 114 133
@Resul t Set MergeRul es
3
fronirabl e
toTabl e
col um
scores
newscor es
name
@nd

Programmer’s Reference Guide 6-11

Understanding the Components
HDA Hle

Overview

The components.hda file enables software to access your component and is
located in the <home>/config/ directory. This file contains a ResultSet named
Components.

Component Structure

Thisisthe structure of the Components ResultSet:
@Resul t Set Conponent s

2

name

[ocation

conponent 1- nane

conmponent 1-1 ocati on

conponent 2- nane

conponent 2-1 ocati on

Programmer’s Reference Guide 7-1

Understanding the Components HDA File

7-2

conmponent n- nane
conmponent n-1 ocati on
@nd

Component Columns

A Components ResultSet consists of two columns. Each column has an
associated function. These are the Components columns:

* name
* |ocation
e column

name

The name column is used to identify a component in case the Content Server
has problems loading the component files. If there are major problems, the
server may hot start. Server errors can be checked using the Content Admin
Server.

location

The location column references alocation. Any location supplied can be an
absolute or relative path to the Component definition HDA file. Since the
recommendation isto place any hew component into its own directory outside
of <home>, itiseasiest to use an absolute path. Always use forward slashesin
the path name.

Y ou may have multiple components referenced in the ResultSet. The order that
they are listed is significant. If your first component in the ResultSet has a
resource with the same name as the second component, the entry in the second
component will take precedence.

Implementing a Component

To implement your component, simply make atwo-line entry into the <home>/
config/components.hda file that supplies the name and location of your custom
component. Any hame can be used for your component, but it is recommended
that the name be related to the function of your component.

Programmer’s Reference Guide

Understanding the Components HDA File

This exampl e references a component named glue.hda:
@Resul t Set Conponent s

2

narme

| ocation

This is ny component
c:/stellent/MConponent/glue. hda

@nd

The Component Wizard is used to enable a custom component as does the
Component Manager functionality of the Content Admin Server. When a
custom component is enabled a two-line entry is made in the components.hda
file.

Removing A Component

To remove your component, simply remove the two-line entry from the
components.hdafile. An alternative is to move the two line entry so that it
appears after the @end tag, asin the following example:

@Resul t Set Conponent s
2

narme

| ocation

@nd

This is ny conmponent
c:/stellent/MConponent/glue. hda
After installing or removing a component the Content Server must be restarted.

The Component Wizard is also used to disable a custom component as does the
Component Manager functionality of the Content Admin Server. When a
custom component is disabled an entry is removed from the components.hda
file.

Programmer’s Reference Guide 7-3

Understanding the Components HDA File

Configuration File

The configuration fileis located at <home>/config/config.cfg and enables you
to define global variables for the system. This allows you to access global
variables within your component. This example illustrates atypical
configuration file:

#l ntradoc system properties

| DC_Nane=Mast er _on_secondserver

| nst anceMenulLabel =Mast er _on_secondser ver

I nst anceDescri pti on=Mast er _on_secondser ver

#Dat abase Vari abl es

I sJdbc=fal se

JdbcDri ver=com ns. j dbc. odbc. JdbcQdbeDri ver
JdbcConnecti onSt ri ng=JDBC: ODBC: i nt r adoc
JdbcUser =sa

JdbcPasswor d=

#l nternet Variables

Ht t pSer ver Addr ess=secondser ver

Mai | Server=nai | . conpany. com

SysAdm nAddr ess=sysadm n@onpany. com
Snt pPor t =25

H t pRel ati veWebRoot =/ st el | ent/

Cgi Fi | eNarre=i dc_cgi _i sapi . dl |

WebPr oxyAdmi nSer ver =t rue

#CGeneral Option Variables
Ent er pri seSear chAsDef aul t =t rue

7-4 Programmer’s Reference Guide

Understanding the Components HDA File

#Addi tional Variables

| sFor nsPresent =true

I ntradocServer Port =4444

Nt | nBecuri t yEnabl ed=standard security
Ht t pRel ati veCgi Root =/ i ntradoc-cgi/

® Important: Modifying the default variables defined in config.cfg can cause your
software to mal function.

Glaobal variables can be defined in a separate file that has the same structure as
the <home>/config/config.cfg file. This separate file is normally maintained
with the rest of the files that define a component and is loaded by placing the
following entry into the ResultSet ResourceDefinition:

@Resul t Set ResourceDefinition
4

type

filenane

tabl es

| oadOr der

envi ronment

conmponent _vari abl es. cfg
nul |

1

@nd

Defining a Variable

Within the config.cfg file, aglobal variable can be defined by entering the
variable name and the value on the same line of the file separated by an equal
sign. For example, to add avariable for the e-mail address of anindividual in
the Complaint Department, you would add asingle lineto thefile, similar to the
following:

Conpl ai nt s=bi | | @ryconpany. com

Programmer’s Reference Guide 7-5

Understanding the Components HDA File

Referencing a Variable

After creating a variable in the config.cfg file, it can be included in your
templates and resources with the following syntax: <$variablename$>. To
reference the Complaints variable used in the “Defining a Variable” section,

you would use <$Complaints$>.

7-6 Programmer’s Reference Guide

Understanding Templates

Overview

Templates can be classified into two distinct categories: presentation templates
and resource templates.

» Presentation templates are those that contain Idoc Script and HTML and will
ultimately become the actual pages that the Content Server web site delivers.

» Resource templates are those that define the information that is used by the
presentation templates to deliver aweb page. The resource templates define
pieces of dynamic content that are incorporated into presentation templates
using <$include name$> statements.

Content Server Loading

All resources in the application are cached at start up. The Content Server
supports active loading of the templates and HTML resource include files. For
example, the revision history template page can be edited and its changes
become instantly available. However, thisis only true for templates and
resource includes. The Content Server does not actively load the list of custom
components, services, queries, or environment if the list of components,
services, or gueries has changed. If a change has occurred, the Content Server or
any stand-alone applications must be restarted before the changes will be
reflected in the application.

Programmer’s Reference Guide 8-1

Understanding Templates

Templates File

8-2

The templates.hdafile islocated in the <home>/shared/config/templates/
directory and contains information about which presentation templates will be
used to help the Content Server deliver the various default web pages.

The templates.hda file contains three ResultSets:
* IntradocTemplates

» VerityTemplates

» SearchResultsTemplates

IntradocTemplates

IntradocTemplates is a ResultSet that defines the templates used with the
system. IntradocTemplates is a ResultSet that defines the templates used with
the system. The ResultSet has the structure shown in the following example. A
description of each column follows the ResultSet structure.

@esul t Set I ntradocTenpl at es
5

nane

cl ass

formype

filenane

description

t enpl at el- nane

tenpl at el-cl ass

tenpl at el-forntype
tenpl atel-fil enane
tenpl at el- descri ption
t enpl at e2- nane

tenpl at e2-cl ass

tenpl at e2-forntype
tenpl at e2-fil enane
tenpl at e2-descri ption

Programmer’s Reference Guide

Understanding Templates

t enpl at en- nane

tenpl at en-cl ass

tenpl at en-forntype
tenpl aten-fil enane
tenpl at en-descri ption

@nd

In tabular format, the information contained in the exampl e file would have the
following structure:

name class formtype filename
description HOME_PAGE |RootPage HomePage
pne_home page.htm |[HomePagefor |ADMIN_LINKS |Administration
weblayout

AdministrationLinks |admin.htm Page containing

linksto

administration

applets and forms

IntradocTemplates Columns

An IntradocTemplates ResultSet consists of five columns. Each column has an
associated function. These are the IntradocTemplates columns:

* name
» class

» formtype
 filename
 description

Programmer’s Reference Guide 8-3

Understanding Templates

name

The name column represents the unique name of the template page. Thisis how
the template is referenced in the Content Server CGl URLs and in code. When
merging custom template file entriesinto the IntradocTemplates table, it is used
as the merge key.

For example, the URL for the standard search page, references the name of the
page, STANDARD_QUERY_PAGE. If you find the
STANDARD_QUERY_PAGE entry in the IntradocTemplates table, you will
see that the name of the file that implements thistemplate is called
std_query.htm.

| dcServi ce=CGET_DOC_PAGE&Act i on=CGet Tenpl at ePage&
Page=STANDARD QUERY_PAGE
Thisis the templates.hdafile entry for the STANDARD_QUERY_PAGE:
STANDARD_QUERY_PAGE
Search
DocQuer yPage
std_query. htm
Docurent Search Form

class

The class column represents the general category of the template. For example,
many of the template pages are part of the document class. For examples see the
<home>/shared/config/templates/ templates.hda file and look at
CHECKIN_LIST, CHECKIN_NEW_FORM.

@ Note: Currently classis not used by the system, but may be used in future product
releases to trigger extra functionality that would be specific to a particular class of
templates. It isgood coding practice to always categorize application el ementswhen
there are alarge number of them.

8-4 Programmer’s Reference Guide

Understanding Templates

formtype

The formtype column represents the specific type of functionality the pageis
trying to achieve. There are amost as many form types as there are templates
within the ResultSet IntradocTemplates. In some cases, the form type
determinesif the template needs to be updated. For example, when we add a
new search results page, it is referenced by the Web Layout Editor Query Result
Pages menu option.

filename

The filename column represents the path to the template file. This can be either
arelative path or an absolute path. A relative path is relative to this
templates.hdafile. Therelative path is relative to the file holding the reference
to thefile name.

description

The description column contains a user-friendly description of the template. It
may be used by the Content Server to display a description of a selected
template in the Administration Tools.

Programmer’s Reference Guide 8-5

Understanding Templates

VerityTemplates

As of version 3.5.3, the software no longer uses the Verity Templates ResultSet.
However, the VerityTemplates ResultSet remains a part of the templates.hda
file aslegacy code.

SearchResultTemplates

The SearchResultTemplates are used to build the search result pages of the
Content Server web site. SearchResultTemplates contain Idoc Script, which is
processed at the time a search is actually requested by aweb browser.

@ Note: This ResultSet was known as VeritySearchAPI Templates prior to version 3.6
of our software.

The ResultSet has the structure shown in the following example. A description
of each column follows the ResultSet structure.

@esul t Set SearchResul t sTenpl at es
6

nane

formtype

fil ename

outfil enane

flexdata

description

t enpl at el- nane

tenpl at el-f orntype
tenpl atel-fil enane
tenpl at el-outfil ename
tenpl at el-f| exdat a
tenpl at el-descri ption
t enpl at e2- nane

tenpl at e2-f ornt ype
tenpl at e2-fil enane

8-6 Programmer’s Reference Guide

Understanding Templates

tenpl at e2-out fil ename
tenpl at e2-f | exdat a
tenpl at e2-descri ption

t enpl at en- nane

tenpl at en-fornt ype
tenpl aten-fil enane
tenpl at en-out fi |l ename
tenpl at en-f| exdat a

t enpl at en-descri ption
@nd

SearchResultTemplates Columns

A SearchResultTemplates ResultSet consists of six columns. Each column has
an associated function. These are the SearchResultTemplates columns:

* name

» formtype
» filename
 outfilename
» flexdata
 description

name

The name column is the unique name of the template. Thisis how the template
is referenced within the Web Layout Editor applet. When aresult templateis
referenced on a search form or query page, thisisthe name that is used.

formtype

The formtype column is the specific type of functionality the page istrying to
achieve. Only ResultsPage is currently supported. This form type identifies the
template as one that can be used to create query result pages using the Web
Layout Editor, Query Result Pages menu.

Programmer’s Reference Guide 8-7

Understanding Templates

8-8

filename

The filename column represents the path to the template file. This can be either
arelative path or an absolute path. A relative path is relative to the
templates.hdafile.

If thistemplate file is used to create a new search results template, the Web
Layout Editor will create a new template with this name in the <home>/shared/
config/templates/results/ directory and also create an entry in the ResultSet
CurrentVerityTemplates.

outfilename

The outfilename column value is always null. Since search is afunction of the
Content Server, there is no search result template file that requires access. The
results of a search are communicated from search server to the Content Server
for final formatting and presentation to the web browser.

flexdata

The flexdata column contains information that is placed into the areas, Textl
and Text2, of a SearchResultTemplates file. The contents of Textl and Text2
can be edited by accessing the Query Result Pages from the Web Layout Editor.

Asitemsare placein the Textl and Text2 areas, the Content Server convertsthe
entriesinto ldoc Script that can be understood by the Content Server. This
script, along with any additional markup you provide, is entered into the
flexdata column.

The format of text entered in the flexdata columnis:
Text2 “text 2 contents"%Tab>Text1l “text 1 contents"%

In thisinstance, <Tab> isaliteral tab character. The default value for flexdata
for the only SearchResultTemplates template (search _results.htm) is:

Text 2 <$dDocTitl e$>%ext 1 <$dDocNane$>%

For any new SearchResultTemplates templates you define, the entries you
provide for flexdata in the definition of anew template will appear asthe default
entries when a user adds a new Query Results page.

Programmer’s Reference Guide

Understanding Templates

description

The description column contains a description of the template. The software
may use this information to display the description of a selected template when
using the Administration Tools. Thisis an example of what the ResultSet
SearchResults looks like in the templates.hda file:

@Resul t Set SearchResul t Tenpl at es

6

narme

formtype

filenane

outfilename

flexdata

description

St andar dResul t s

Sear chResul t sPage

search_results. htm

nul |

Text2 <$dDocTitl e$>%ext1 <$dDocNane$>%
Page presenting results of a search using Verity Search AP

@nd

Programmer’s Reference Guide 8-9

Understanding Templates

Defining Custom Templates

8-10

When new templates are created, they are made available by creating a
ResultSet that describes them. The ResultSet name you create should be
assigned a unigue name, such as MyTemplates. The structure of the ResultSet
must be identical to the IntradocTemplates ResultSet so that you can define a
MergeRule from the custom templates file, MyTemplates to I ntradocTemplates.

The name you assign to your templates page depends on whether you are trying
to replace an existing template, or just augmenting the templates that come with

the product.
» To replace an existing template page, use the same name for your template.

» To add atemplate page that you will create areferenceto in the
templates.hdafile, use a new, unique name for your template.

The Content Server loads the page templatesin a series of steps where each
following step may redefine atemplate loaded earlier or add anew one. A
template is an entry in atable that describes which HTML template file should
be loaded for the particular template.

Programmer’s Reference Guide

Understanding Content-Centered
Template Metadata

Overview

The manipulation of metadata is handled by the process of creating HTML
resource includes using the super tag to override default behavior. Within
specified parameters metadata manipulation can be performed for any of these
content-centered templates.

« checkin_new.htm
e checkin_sel.htm

e doc_info.htm

e update_docinfo.htm
e std_query.htm

Programmer’s Reference Guide 9-1

Understanding Content-Centered Template Metadata

Multi-Checkin Environment File

9-2

The multi_checkin_environment.cfg configuration fileis part of the
MultiCheckln component. Thisfile is used to manipulate metadata fields on
content-centered template pages for certain content types. This configuration
fileis an environment-type resource that provides information to the Content
Server concerning the interaction with various content-centered pages. The
configuration file, along with the HTML include resources, uses name/value
pairs to suppress, display, pre-fill, or make metadata fields read-only based on
the chosen content type.

Note: Thestd_page.htm file providesalist of universal resourceincludesthat can be
used by any Content Server page and alist of resource includes for pages that have

flex areas (the two check in pages, the doc info page, and the search page). Thisfile
islocated in the <home>/shared/config/resources/ directory.

Multi-Checkin Menu Display

The UseMultiCheckinOnSidebar environment setting enables or disables a pull-
down menu on the portal. If the environment setting is disabled, the multi-
checkin menu will only be accessible on the Content Management form. The
multi-checkin menu display is defined in the multi_checkin_environment.cfg
file using this format:

UseMil ti Checki nOnSi debar =t rue
» Setting to TRUE enables the pull-down menu on the portal.
» Setting to FAL SE disables the pull-down menu on the portal.

Multi-Checkin Content Types

The MultiCheckinTypes setting defines the list of content typesthat have specia
check in pages. Each content type must have a set of hidden and read-only
fields. The multi-check in content types are defined in the
multi_checkin_environment.cfg file using this format:

Mul ti Checki nTypes=ADACCT, ADCORP, ADENG, ADHR

The Configuration Manager applet enables you to create custom New Check In
pages for custom content types. To create custom New Check In pages you must
add the custom content type to the list and make an associated configuration
entry for that content type.

Programmer’s Reference Guide

Understanding Content-Centered Template Metadata

Custom metadata fields are prefixed with an x on Content Server HTML pages.
Each content type should define fields using this convention:

Cont ent TypeName_hi de=xCust omvet al, xCust omvet a2
Cont ent TypeName_checki n_r eadOnl y=xCust om\et a3, xCust onmvet a4

Cont ent TypeName_updat e_readOnl y=xCust omiet al, xCust omet a2,
xCust omvet a3

Cont ent TypeName_xComment s=This is the default coment for an
ADACCT field on the checkin page.

Cont ent TypeName_xCust omvet a3=Thi s val ue will show on the checkin
page, but its uneditable.

These content types have associated special check-in pages:
« ADACCT

« ADCORP

+ ADENG

+ ADHR

Programmer’s Reference Guide 9-3

Understanding Content-Centered Template Metadata

For ADACCT, no metadata is hidden, no fields are read only, and the comment

field is pre-filled on check in.
ADACCT _hi de=

ADACCT checkin_readOnl y=
ADACCT updat e_readOnl y=

ADACCT _xComment s=This is the default comment for an ADACCT field.

Example Content Type ADACCT:

Content Check In Form

Contand 10 |

Trpe | ADACET - Acme Accawnting Depormment. 7|

Titsz |
Fudlher |-a-_.-aa|:|m|n. "'l
Sacurnty Group |.bm-:-rr 'I

Primsry File | Browse.. i
Alternata Fila | Browsa...
Remsian |'I

Thig iz the default comgent or &n =]
Commarls ADACCT fiemld,

Release Date |F20/2000 5:09 P

Expiratinn Date |

4|

Chack In | Claar Form

Quick Help |

Programmer’s Reference Guide

Understanding Content-Centered Template Metadata

For ADCORP, no metadatais hidden, no fields are read only on check in, but on
the update page the Comments field will be read only. Also, the comment field
is pre-filled on check in with a default value.

ADCORP_hi de=
ADCORP_checkin_readOnl y=
ADCORP_updat e_r eadOnl y=xComment s

ADCORP_xComment s=This is the default conment for an ADCORP fi el d,
whi ch cannot be changed on update.

Example Content Type ADCORP:

Cantant Chack In Farm

Coatent 1D [

Type | ADTORE - Acine Corporate Deparlirenl =|

Tille [
Mashor |:',':.1|:.'min "l
Secunty Group F.-'i'.:lrun "'|

Premary File | Browse... |
ANarnata Fil | Browee.. |

Reviginn |1
This ia che derfaulc comwrent Lor &b =]
CarimBnis .-!;DEB-M‘ fiegld, which canpnot be changed on
wpdnte . =
JonMusmiber |
Clignianme | SEC Metrics =]

Refazze Date |".-."2ﬁ.-"2EI:ll:| 4:53 TE

Expiralion Daie |

Check In I Claar Farrmn Guick Help

Programmer’s Reference Guide 9-5

Understanding Content-Centered Template Metadata

For ADENG, the Comments field is hidden entirely

ADENG _hi de=xComment s

ADENG checki n_readOnl y=
ADENG updat e_readOnl y=
Example Content Type ADENG:

Content Check In Form

|._=~DEH|3 - Acme Enginesing Dapadmand

il

Canteal 10 |

Trpe

Titla |

Sl [#¢zadmin =]

Sacunty Group

Frimary File |

Browss.. |

Altprnals Fila | Brawse . |
Revissan [
Release Oste |[7/20/2000 5:11 P

Espirstion Oste |

Checkin | Clear Form

QuickHelo |

Programmer’s Reference Guide

Understanding Content-Centered Template Metadata

For ADHR, the Comments field is read only always, and set to a default value.
ADHR hi de=

ADHR_checki n_r eadOnl y=xConmmrent s

ADHR updat e_readOnl y=xComment s

ADHR xComment s=This is the default, unchangable coment for an

ADHR fi el d.
Content Type ADHR:
Content Check In Form
Conign 1D |
Typin | ADHR - Acme Hurman Resowrces Dapariment =)

Titla |
Al |=:.--: admin '-'i
Secyrly Grdup |-5\$='l:m ""i

Firreasy File I Browse. ..
Akomnate File | BrOweE, .,
Rewision [1

Commenls This i= lhe defaull, urchangakle comement for an ADER fizld

JabMumber |

Cheniane | 250 Meirics =l

Rolpase Date [7/23/2000 4:50 P

Espirstion Date |

Lhack In | Clear Faim GQuick Help

Programmer’s Reference Guide 9-7

Understanding Query and Service
Resources

Overview

There are two types of resources: query and service. These resources comprise
some of the main coding mechanisms that drive the software.

Query Resource

Queries are used with the product to manage information in the system
database. Queries are used in conjunction with service scripts to perform such
tasks as adding to, deleting and retrieving datain the Content Server database.

These are general guidelines for developing your own query:

« Defineanew query inan HTM file. The file must include atable that is
identical in structure to the QueryTable table.

» Load the query by defining it in a ResourceDefinition ResultSet.
» Merge the table defining your query with the QueryTable table.

Programmer’s Reference Guide 10-1

Understanding Query and Service Resources

10-2

Query Definition Tables

A Query resource definition pointsto an HTM file. The HTM file defines a
table with a specific format for query definitions. To better understand the
definition, look at the Query resource definition that comes with the system
<home>/shared/config/resources/query.htm.

ThisHTM file contains two query tables:
* QueryTable
* QueryWebChangesTable

These HTM tables are delimited with a start tag <@tabl e tablename@> and an
end tag <@end@>. The content of thetableis held in an HTML table element.
The QueryWebChangesTable contains queries that are used to maintain the
HTML pages on a Content Server web site.

Query Definition Table Columns

Both QueryTable and QueryWebChangesTable consist of three columns. Each
column has an associated function. These are the three columns:

* name
e queryStr
* parameters

name

The name column contains a unique name for the query. To override a query,
you would use the same name for a query that you define. To add anew query,
use any other unique name. Normally, the first character of the query name
defines the query type:

Query Type Description
D delete query
I insert query
Q select query
U update query

Programmer’s Reference Guide

Understanding Query and Service Resources

gueryStr

The queryStr column defines the query. This query is defined using SQL. If
there are any parameters, their place is held with a question mark (?) asan
escape character.

parameters

The parameters column describes the parameters that are passed to the query. A
query is called from a service and a serviceis called by aweb browser. It isthe
responsibility of the web browser to provide the values for each of the
parameters for the query. This can be done with a FORM element in the web
page. In the case of the DOC_INFO service, the parameter is provided in a
directory listing or query result page, as show in the following figure. The URL
for DOC_INFO is created with the dID parameter specified as part of the URL.

Database Tables

This table lists the database tables along with a brief description of each.

Table Name Description
Alias Providesalist of workflow aliases and their
descriptions.
AliasUser Provides alist that associates aliases with
users.
Config Provides arecord of database changes. This

feature references the database list to
determine whether the database is
configured properly. If achange is needed,
the feature updates the database and records
the change in the Config table for future
reference.

Counters Provides centralized storage of sequence
numbers used by the application.

DocFormats Provides alist of formats and their
associated conversion methods and
descriptions.

Programmer’s Reference Guide 10-3

Understanding Query and Service Resources

10-4

Table Name

Description

DocMeta

Provides atable containing the custom
Doclinfo field values for each document.
Thisis updated by the system server when
content items are checked in, deleted, or
updated.

DocMetaDefinition

Provides alist of the custom Doclnfo fields
and their attributes.

DocTypes The servicereturnsalist of the content item
types (.doc, .gif, etc.), their descriptions,
and their file name

DocumentAccounts Provides alist of accounts.

DocumentHistory

Provides ajournal of content item
transactions such as checkin, checkout,
delete, or update.

Documents

Provides alist of content item filesin the
system. Each file normally hastwo records:
one for the native file and one for the web
file.

ExtensionFormatM ap

Provides alist of extensions defined in the
system and the format each is mapped to.

OptionsList

Provides atable of all option lists. Each list
has a common key value, option value, and
order.

ProjectDocuments

Provides atable that stores information
about all content items associated with a
Content Publisher project.

ProblemReports

Provides atable that contains problem
report information that is generated through
the workflow process.

Programmer’s Reference Guide

Understanding Query and Service Resources

Table Name Description

RegisteredProjects Provides atable that stores information
about any projects registered through
Content Publisher.

Revisions Provides alist of all content itemsin the
system. One record for each revision of
each document is provided including the
status of that revision and any required
metadata val ues.

RoleDefinition Provides alist of roles and their
permissionsto each security group: onerow
for each role of each security group.

SecurityGroups Provides alist of security groups and their
descriptions.

Subscription Provides alist of currently subscribed
content items.

Users Provides alist of all users registered in the

system with their primary attributes:
username, full name, password, e-mail
address, directory, old stylerole (when only
one role was given each user), type, and
password encoding.

UserSecurityAttributes Provides alist of users and their security
attributes. Thisiswhere the new account
and multiple role datafor each user identity
are stored.

WorkflowAliases Provides atable used to associate user
aiases to workflow steps.

WorkflowCriteria Provides alist of workflow criteriaused to
build the where clause in the query that
determinesif acontent item should follow a
particular workflow.

Programmer’s Reference Guide 10-5

Understanding Query and Service Resources

Table Name Description

WorkflowDocAttributes | Provides an internal status table that stores
information about content items in active
workflows.

WorkflowDocuments Provides alist of all content itemsin
workflows. Thisis updated by the system
server to keep track of the status of content
items (state and step) that are in workflows.

Workflows Provides alist of workflowsincluding their
description, security group, status, and type.

WorkflowStates Provides an internal status table that stores
information about content itemsin active
workflows.

WorkflowSteps Provides alist of workflow steps, including

step description, type, and number of
reviewers required to pass step.

10-6 Programmer’s Reference Guide

Understanding Query and Service Resources

Example Query

This script isthe Qdoclnfo query asit is defined in the file <home>/shared/
config/resources/query.htm. The queryStr isa SQL select statement that obtains
the necessary information to display about afile in the DOC_INFO template
page. Thisisthe page that will be displayed when a user requests the
information page (thei icon) from the search results page.

<tr>

<t d>Qdocl nf o</t d>

<t d>SELECT DocMeta.*, Docunents.*, Revisions.*
FROM DocMet a, Docunents, Revisions

VWHERE DocMeta. dl D = Revi sions.dl D AND
Revi si ons. dl D=Docunent s. dl D

AND Revi si ons. dl D=? AND Revi si ons. dSt at us<>’ DELETED AND
Docurent s. dl sPri mary<>0

</td>

<td>dIDint</td>

</tr>

Notice that this query joins the three tables (DocM eta, Revisions, and
Documents) on the dID field (content ID), which is also the parameter for this
guery. This query aso takes one argument, the diD (content ID). The dID
parameter is provided by the URL that requests the DOC_INFO service.

Programmer’s Reference Guide 10-7

Understanding Query and Service Resources

Service Resource

10-8

A serviceisafunction performed by the system server on behalf of the web
browser (the client). For example, the standard query page is delivered to your
web browser as a service when arequest is made to get the search form by
clicking Search link on the portal page. The URL for the page includes the
following information:

| dcServi ce=CET_DOC_PAGE&Act i on=Get Tenpl at ePage&Page=STANDARD QUER
Y_PAGE

An IdcService placed in a URL indicates that a service is being requested from
the system server. A service provides a function for a web browser. However
services are functions that can be performed by the server on behalf of the entire
system and the system server iswritten so that it will use services when it needs
to perform atask.

A service is defined by a script. The script defines the name, attributes and
actions of the service. A service script isdefined inan HTM file, but the service
is also dependent upon other resource definitions to perform itsjob. A service
needs atemplate, and most likely aquery. The HTM file defines a table with a
specific format for a service definition.

The file <home>/config/shared/resources/std_services.htm provides a sample
of scripted services.

Important: Do not edit thisfilein a graphical browser in its graphical mode. Use a
text editor
These are the general steps needed to define a new service:

1. Defineaserviceinan HTM file. The file must include atable that is
identical in structure to the StandardServices table.

2. Loadthe service by defining it in a ResourceDefinition ResultSet.
3. Mergethe table defining the service with the StandardServices table.

Service Resource Structure

The structure of a service-type resourceis defined by athree column table. The
table is delimited with a start tag <@table “tablename’ @> and an end tag
<@end@>. The first column contains the service’ s unique name. The second
column describes the attributes of the service. The third column describes the
actions that are performed by the service.

Programmer’s Reference Guide

Understanding Query and Service Resources

This example shows the HTML markup for a service entry in thistable. This
describes a service with n actions:

<tr>
<t d>servi ce name</td>
<td>service type
access |leve
tenpl ate page
sub-service
subj ects notified

error message</td>

<td>type of actionl:function nanel:function parametersl:action
control maskl:error nessagel[
]

type of action2:function name2:function paraneters2:action
control nmask2:error nessage2[
]

type of actionn:function namen:function paranetersn:action
control nmaskn:error nessagen</td>

</[tr>

The
 tag at the end of each action lineis strictly for display purposes only
and is optional. However, the </td> must occur on the same line as the last
action.

Service Name

This column contains information about the unique name of the service.
<t d>GET_DYNAM C_PAGE</ t d>

Thereference to aservice called in aURL isthe service name.For example, this
URL iscalling the service named GET_DYNAMIC_PAGE:

/intradoc-cgi/idc_cgi isapi.dl|?l dcService=GET_DYNAM C_PAGE&
PageNane=i ndex

Programmer’s Reference Guide 10-9

Understanding Query and Service Resources

10-10

Service Attributes

The service attribute column is composed of six distinct items. This example
shows the syntax of these items. Following the syntax is a description of each
attribute.

<td>service type
access |evel
tenpl ate page
sub-service
subj ects notified

error message</td>

Service Class

There are several types or class of services, and the class of service determines,
in part, what actions can be performed by the service. There are actions that all
services share, and there are actions that are quite specific to the service type.
These are the types of services currently available:

Service Class Description
Service The default service.
DocService Used for performing actions on content items,

for example: check infout, content item
information, resubmit, etc.

FileService Used to retrieve files from the system, for
example: get copy.

MetaService Used to manage doc info fields.

PageHandlerService |Used by Web Layout Editor to edit pages.

UserService Used to manage users, for example: add/edit/
delete users.

WorkflowService Used to manage workflows.

Programmer’s Reference Guide

Understanding Query and Service Resources

Access Level

Each service calls aglobal security check to determineif the logged in user has
permission to execute the service. The global security check isonly relevant if
the service requires global privilege. The check validatesif the user needsto be
part of the administration role or if only agiven privilege is required (less than
ADMIN_PRIVILEGE) on at least one group.

The bit flags are combined with alogical AND to create an access level:

READ_PRIVILEGE =1
WRITE_PRIVILEGE = 2
DELETE_PRIVILEGE =4
ADMIN_PRIVILEGE =8
GLOBAL_PRIVILEGE =16

For example, to access the Administration page, the service requires the user to
be part of the administration role. Consequently, users need to have global
administration privileges and the service has the access level set to 24. If the
user wants to access the check in page, the user needs write privilegeson at least
one group, and the access level of the security group is set to 18.

If no user islogged in and the service has access level with the
GLOBAL_PRIVILEGE flag set, alog on prompt is returned. Thislog on
prompt forces the user to log into the system before the product will perform the
service.

Template Page

The template page is used to communicate a successful request back to the web
browser. Information that the service gathers is merged with the template page.
Not all types of services require or even use a template page. For example, the
PageHandlerService, which is called from an applet, does not specify atemplate
page. The template page name is mapped to an HTML file using the
templates.hdafile.

Sub-Service

The service may define a sub-service to execute, otherwise, the value null is
used. For example, the service ADD_WORKFLOWDOCUMENT executes the
sub-service ADD_WORKFLOWDOCUMENT_SUB. Thissub-serviceisa
workflow related service that adds a revised content item to the workflow and
consists of these actions:

* Queries whether the content item workflow is locked.

Programmer’s Reference Guide 10-11

Understanding Query and Service Resources

e |nsertsthe workflow content item information in the database.
» Raetrieves the workflow content item name from the database.
+ Evaluatesthe revision status of the content item.

* Createsanew revision.

Subjects Notified

If a service changes one or more subjects, it must notify the affected subjects of
the changes. The subjects notified string is a comma-separated list of changed
subjects. For example, the ADD_USER service adds anew user to the system
and subsequently informs the system that the ‘ users’ subject has changed.
Possible subjects are: accounts, aiases, collections, docformats, doctypes,
documents, dynamicqueries, metadata, metaoptlists, templates, and users. You
can think of subjects as subsystems within the product.

Each service by default will inform its requestor of changes to subjects.
Consequently, the PING_SERVER service, which has no action, is used by the
Administration applets to detect changes in the state of the server.

Error Message

The error message is returned by the service, if no action overridesit. Each
action can have an error message associated with it that would override the error
message provided as an attribute. If the action error message is not null, it
becomes the error message for the remainder of the actionsin the service. If itis
null, the error message remains unchanged from the previous action. For
example, the error message defined as an attribute of CHECKIN_NEW_FORM
is“Unable to build check in form,” but on executing the second action it
becomes “Error retrieving option lists for custom fields.”

<tr>
<t d>CHECKI N_NEW FORMK/ t d>
<t d>DocServi ce
18
CHECKI N_NEW FORM
nul |
nul |

Unable to build check in form</td>
<t d>3: set Local Val ues: i sNew, 1: 0: nul |

10-12 Programmer’s Reference Guide

Understanding Query and Service Resources

3: 1 oadMet aOptionsLists::0:Error retrieving option lists
for customfields.

3: 1 oadDocDef aul ts:: 0: nul |

3: 1 oadDef aul t I nfo:: 0: nul |

3: 1 oadMet aDefaul ts:: 0: nul | </td>
</tr>

Service Actions

Thethird column of a defined service are the service actions. Each service may
contain one or more actions, which determine what happens on execution. An
action is defined by the following syntax:

type of action:function name: function paranmeters:action control
mask: error message

An action consists of five parts, each part separated from the previous part by a
colon. If thereis no entry for a part, then the part is left empty. In such a case,
you will find successive colons.

Type of Action

An action can be used to execute an SQL statement, perform a query, run code,
cache the results of aquery, and load an option list. These are the possible types

of actions:
Action Type Action Function

QUERY_TYPE=1 For QUERY _TY PE, the function must be a
“select” query.

EXECUTE_TYPE=2 For EXECUTE_TYPE, the function
specifies a query that performs an action on
the database.

CODE TYPE=3 For CODE_TY PE, the function specifiesa
code module that is a part of the Java class
implementing the service.

Programmer’s Reference Guide 10-13

Understanding Query and Service Resources

10-14

Action Type Action Function

OPTION_TYPE=4 For OPTION_TY PE, the function refers to
an option list stored in the system.

CACHE_RESULT_TYPE =5 |For CACHE_RESULT_TY PE, the function
isasin QUERY _TY PE, but here the results
returned by the query are stored for later use.

Note: The difference between QUERY _TYPE and CACHE_RESULT_TYPEisthat
in the first case the query isimmediately discarded.

Function Name

The function name determines which query or Javafunction is used to perform
the action. The function name isrestricted by the type of service and the type of
action.

Function Parameters

The parameters that are used by the functions are comma-separated. In the case
of QUERY _TYPE and CACHE_RESULT_TYPE, thefirst parameter will be
the name the action assigns to the ResultSet returned from the query. This
ResultSet can then be referenced in the template page. For OPTION_TY PE, the
parameters are optional. However, if they are given, they are used as follows:
the first parameter is the key under which the option list is loaded; the second
parameter is the selected value for display on an HTML page.

The control mask is especialy useful in controlling the results from queries to
the database. Possible bit values and their meanings are shown in the following
table. These values can be logically combined using AND. For example, a
database query that checks to make sure that a content item does not exist, and
also starts adatabase transaction to add a new content item would have a control
mask value of 20 (16 + 4).

Control Mask Description
CONTROL_IGNORE_ERROR =1 Do not abort the service on error.
CONTROL_MUST EXIST =2 At least onerecord must be returned

by the query.
CONTROL_BEGIN TRAN =4 Starts a database transaction.

Programmer’s Reference Guide

Understanding Query and Service Resources

Control Mask Description

CONTROL_COMMIT _TRAN =8 Concludes a database transaction.
CONTROL_MUST_NOT_EXIST =16 |Query must not return any rows.

Note: CONTROL_MUST_EXIST and CONTROL_MUST _NOT_EXIST are used
only for QUERY_TYPE and CACHE_RESULT TYPE.

Programmer’s Reference Guide 10-15

Understanding Query and Service Resources

Example Service

The DOC_INFO service provides a good example of how queries and services
arerelated. The DOC_INFO service definition from the <home>/config/
resources/std_services.htm file is shown:

<tr>
<t d>DOC_| NFO</ t d>
<t d>DocSer vi ce

1

DOC_| NFO
nul |

nul |

Unable to retrieve informati on about the revision.</td>
<t d>5: Qdocl nfo: DOC I NFG 2: This document no | onger exists.

3: checkSecurity: DOC I NFG 0: Unable to retrieve information
for '’ {dDocNane}’ ' .

3: get DocFor mat s: QdocFor mat s: 0: nul |
3: get URLAbsol ute:: 0: nul |
3: get User Mai | Addr ess: dDocAut hor, Aut hor Addr ess: 0: nul |

3: get User Mai | Addr ess: dCheckout User, Checkout User Addr ess: 0: nul |
3: get Wor kf | owl nf o: WF_I NFO: 0: nul |
3: get DocSubscri ptionl nfo: Q sSubscri bed: 0: nul |

5:QevH story: REVISION H STORY: 0: Unable to retrieve
revision history for '’ {dDocNane}'’.
</td>

<[tr>

10-16 Programmer’s Reference Guide

Understanding Query and Service Resources

This table summarizes the attributes of the DOC_INFO service.

Attribute Value
Service Type DocService
This service is providing information about a
content item.
Access Level 1

The user requesting the service must have read
privilege on the content item.

Template Page DOC_INFO

This service usesthe DOC_INFO template
(doc_info.htm file).

Sub-Service null

This service does not define a sub-service to
execute.

Subjects Notified null
No subjects are affected by this service.

Error Message Unable to retrieve information about the
revision.

The template page for the DOC_INFO serviceisthe DOC_INFO template. Itis
important to know what is happening between the files so that you can
understand the interactions between the template page and the actions
performed in aservice.

The definition for the content that the doc_info.htm template contains is located
in the <home>/shared/config/resources/std_page.htm file. Code from both files
appear in the following markup section:

Programmer’s Reference Guide 10-17

Understanding Query and Service Resources

10-18

Markup from the <home>/shared/config/templates/doc_info.htm file:

<! DOCTYPE HTML PUBLIC "-//I ETF/ / DTD HTM.// EN'>
<htn >
<head>
<$include std_ info_htnl head decl arations$>
</ head>
<$i ncl ude i nfo_body_def $>
<$i ncl ude info_page_content $>
</ body>
</htm >

Markup from the <home>/shared/config/resources/std_page.htm file that
defines what will appear in the doc_info.htm template:

<@lynani chtml info_page_content @
<$i ncl ude std_page_begi n$>
<$i ncl ude std_header $>

<!-- Do a loop on DOC INFO so that all substitution tags
will use DOC INFO as their first place to find their val ues.
QG herwise their is confusion between this result set and the
REVI SI ON_H STORY table that cones later. For exanple
"dStatus' is a value in both tables-->

<$l oop DCC_| NFOB>

<$if AllowPrimaryMetaFile and i sTrue(Al | owPrimaryMet aFil e)
and

i sTrue(dFormat |ike "*idcrmeta*")$>
<$showPri mar yMet aFi | eFi el ds = "1"$>
<$endi f $>
<$i ncl ude doc_info_notify_data$>

<t abl e border=0 cel |l paddi ng=2 cel | spaci ng=0
wi dt h=<$doc! nf oW dt h- 30$>>

<caption align=top><h4 cl ass=pageTitle><$pageTitl e$></
caption>

Programmer’s Reference Guide

Understanding Query and Service Resources

<$i ncl ude special _checkin_fiel ds1$>
<$i ncl ude std revision_label field$>
<$i ncl ude std_docunent type fiel d$>
<$i ncl ude std_docunent _title_field$>
<$i ncl ude aut hor _checkin_fiel d$>

<$i nclude std_nmeta fiel ds$>

<$i ncl ude security_checkin_fiel ds$>
<$i ncl ude checkout author _info fiel d$>
<$i f |sStagi ngDoc$>

<$i ncl ude doc_date_fiel ds$>

<$endi f $>

<$fiel dName = "dStatus", fieldCaption = "Status"$><$i ncl ude
std_displayonly field$>

<$i f HasOrigi nal $>

<$fi el dNane = "dDocFormats", fieldCaption =
"For mat s" $><$i ncl ude std_display_fiel d$>

<$endi f $>
<$i ncl ude workflow_ list_for_doc$>
<$i f HasUrl $>

<$i ncl ude doc_url _fiel d$>
<$endi f $>

<$if HasOriginal and not ClientControlled and not
showPr i mar yMet aFi | eFi el ds$>

<$fi el dName = "dOrigi nal Nane", fieldCaption = "Get Native

File"$>
<$i f Downl oadAppl et $>
<$val ueStyl e="xxsmal I ", fieldValue =
strTrimM(inc("downl oad file by applet formcontent"))$>
<%el se$>
<$fieldvalue = strTrimas(inc("doc_file_get_copy"))$>
<$endi f $>

<$i f Downl oadAppl et $><f or m nane=down| oadFor mp<$endi f $>

Programmer’s Reference Guide 10-19

Understanding Query and Service Resources

<$i ncl ude std_displayonly field$>
<$i f Downl oadAppl et $></ f or me<$endi f $>
<$endi f $>

<$i f |sFail edConversion or |sFailedl ndex or
| sDocRef i nePasst hr u$>

<$i f I sFail edConversi on$><$i ncl ude
st d_naneval ue_separ at or $><$endi f $>

<tr>
<td align=right>
<$i f |sFailedl ndex$>I ndex Error:
<$el se$>Conversion Error:
<$endi f $></ span></t d>
<td>
<t abl e>
<tr>
<t d>
<$dMessage$>
<$i f IsFailedl ndex$>

Content has been indexed with Info only.

Resubmit should only be perfornmed if the problem has
been resol ved.

<$el sei f | sDocRefi nePasst hr u$>

Content Refinery failed to convert the content
itembut released it to the

web by copying the native file.

<$endi f $></ span></t d>

<td><form acti on="<$Ht t pCgi Pat h$>" met hod="POST" >
<i nput type=hi dden name=dl D val ue="<$dl D$>" >

<i nput type=hi dden name=dDocNane
val ue="<$dDocNane$>" >

<i nput type=hi dden name=I dcServi ce
val ue="RESUBM T_FOR_CONVERSI ON' >

<input type=subnit val ue=" Resubmit ">

10-20 Programmer’s Reference Guide

Understanding Query and Service Resources

<$if CientControlled$>

<i nput type=hi dden name=CientControlled
val ue="DocMan" >

<$endi f $>
</forme</td>
</tr>
</tabl e>
</td>
</tr>

<$i f |sFail edConversi on$><$i ncl ude
st d_naneval ue_separ at or $><$endi f $>

<$endi f $>

</tabl e>

<$i f | sNot SyncRev$>

<tabl e wi dt h="100% >
<tr>

<td align=center>The | ocal
copy of this content item has

not been updated to the latest revision. Use <i>Cet
Native File</i> or <i>Check out</i>

to update your local copy of <i><$dDocNane$></i>. </
span></t d>

</[tr>
</tabl e>
<$endi f $>

<$i f |sStagi ngDoc$>

<tabl e wi dt h="90% >
<tr>

<td wi dth="20% al i gn=center><$i ncl ude
doc_probl em reports$></td>

Programmer’s Reference Guide 10-21

Understanding Query and Service Resources

<td width="20% align=center><$incl ude
proj ect _probl emreports$></td>

</tr>
</tabl e>
<$i ncl ude doc_provi der_i nf 0$>
<%el se$>
<tabl e wi dt h="90% >
<tr>
<$if dientControlled$>

<td wi dth="20% al i gn=center><$i ncl ude
doc_sel ect _actions$></td>

<$el se$>

<td w dth="20% al i gn=center><$i ncl ude
doc_file undo_checkout $></t d>

<td w dth="20% al i gn=center><$i ncl ude
doc_file_checkout $></td>

<td width="20% align=center><$if
showPri mar yMet aFi | eFi el ds$><$i ncl ude neta_fil e_updat e$>

<$el se$><$i ncl ude doc_fil e _updat e$><$endif $></t d>
<$endi f $>

<td w dth="20% align=l ef t ><3$i ncl ude
doc_subscri ption_unsubscription$></td>

<$if dientControlled$>

<td wi dt h="20% ></td>

<td wi dth="20% ></td>

<$endi f $>
</tr>
</tabl e>
<$endi f $>
<$i f HasOriginal and Downl oadAppl et $>
<$i ncl ude downl oad_native_appl et $>
<$endi f $>

10-22 Programmer’s Reference Guide

Understanding Query and Service Resources

<I-- end | oop on DOC | NFO - >

<$endl oop$>

<$i f |sStagi ngDoc$>

<I-- present a problemreport form-->
<$i ncl ude doc_add_probl em report $>
<%el se$>

<I-- Table holding information about all revisions of this
docurent - - >

<$i ncl ude doc_rev_tabl e$>
<$endi f $>
</td>

</tr>

</tabl e>

<$i ncl ude std_page_end$>

<@nd@

Programmer’s Reference Guide 10-23

Understanding Query and Service Resources

A service can have one or more service actions associated with it. In the case of
the DOC_INFO service, the service consists of ten actions:

Attribute Value

1 Cached query action that retrieves information
from the database using a query.

This action retrieves content item information.
The result of this query is assigned to the
parameter DOC_INFO and stored for later use.

The control mask setting specifies that the
guery must return arecord or the action fails
with the given error message. The action
throws a data exception if the content item no
longer exists and returns an error message.

This content item no longer exists

2 Code action specifying a code module that isa
part of the Java classimplementing the service.

This action retrieves the data assigned to the
parameter DOC_INFO and maps the result set
values for dSatus and dDocTitle.

3 Code action specifying a code module that isa
part of the Java class implementing the service.

This action retrieves the data assigned to the
parameter DOC_INFO and evaluates the
assigned security level to verify that the user is
authorized to perform this action. If the user
fails the security check a message is returned.

Unable to retrieve information for
"{dDocName}.”

10-24 Programmer’s Reference Guide

Understanding Query and Service Resources

Attribute Value

4 Code action specifying a code module that isa
part of the Java class implementing the service.

This action retrieves the file formats for the
content item. The action passes QdocFormats
as a parameter (defined in <home>/config/
resources/query.htm). The file formats are
passed to the Formats: entry of the DOC_INFO
template.

5 Code action specifying a code module that isa
part of the Java classimplementing the service.

This action resolves the URL of the content
item. The URL is passed to the Web Location:
entry of the DOC_INFO template.

6 Code action specifying a code module that isa
part of the Java class implementing the service.

This action resolves the e-mail address of the
content item author and the user who has
checked out the content item. The action passes
dDocAuthor and Author Address as parameters.

7 Code action specifying a code module that isa
part of the Java class implementing the service.

This action resolves the email address of the
content item author and the user who has
checked out the content item. The action passes
dCheckoutUser and CheckoutUser Address as
parameters.

Programmer’s Reference Guide 10-25

Understanding Query and Service Resources

Attribute Value

8 Code action specifying a code module that isa
part of the Java class implementing the service.

This action eval uates whether the content item
is part of aworkflow. The action passes
WF_INFO as a parameter. The DOC_INFO
template isreferenced and if WF_INFO exists
then workflow information isincluded in the
DOC_INFO template.

8 Code action specifying a code module that isa
part of the Java class implementing the service.

This action evaluates whether the current user
has subscribed to the content item and modifies
the DOC_INFO page. If the current user is
subscribed, an Unsubscribe button is
displayed. If the user is not subscribed, a
Subscribe button is displayed. The action
passes QisSubscribed as a parameter (defined
in <home>/config/resources/query.htm).

10 Cached query action that retrieves information
from the database using a query.

This action retrieves revision history
information. The result of thisquery isassigned
to the parameter REVISION_HISTORY. The
DOC_INFO template uses
REVISION_HISTORY in aloop to present
information about each revision in the
DOC_INFO page. If the action fails, this error
message is displayed:

Unableto retrieve revision history for
"{dDocName}.”

10-26 Programmer’s Reference Guide

Understanding the MultiCheckin
Component

Overview

This section discusses the MultiCheckin component and analyzes the
functionality of each file within the component. After implementing the
MultiCheckin component you must log into the Content Server and click the
Configuration Manager link.

After implementation, the Configuration Manager screen displays a drop-down
list. Also, other changes will be noticed after selecting a specific file type. For
example, the difference between choosing the content type ADACCT versusthe
content type ADENG is compared:

Programmer’s Reference Guide 11-1

Understanding the MultiCheckin Component

Example Content Type ADACCT:

Content Check In Form

Conterd 10 |

Trpe | ADACET - Acme Accownting Depammant. 7|
Titsz |
Foalbige [zvzadmin =]
Secunty Group Im

Primsry File | Browse... |

Alternate Fila | Browse...
Resisian |'I

Thiz iz the default comsment for &b =]
Commanls ADACCT £field,

|

Relemse Dete |F/20/2000 5:09 Pid

Expiration Date |

Checkin | ClaarFarm | GuickHelp |

11-2 Programmer’s Reference Guide

Example Content Type ADENG:

Understanding the MultiCheckin Component

Content Check In Form

|._-'-\DEHI3 - Acme Engingeing Dapadmand

|

Canteal 10D |

Type

Titla |

Sl [#¢zadmmin =]

Sacunty Group

F‘-'ima']r File |

Altprnale Fiia |

B |

Reavisian [

Releass Oste |7/20/2000 5:11 P

Expirstion Oste |

Checkin | Clear Form

GuickHeln |

Programmer’s Reference Guide

11-3

Understanding the MultiCheckin Component

Component Description

One of the more popular customizations performed is to have metadata
displayed or suppressed on the check in screen, depending upon the content type
selected. This particular component focuses on metadata fields that appear on
the Content Server by default.

Accordingly, you may have different content metadata and you will need to
modify the environment file, multi_checkin_environment.cfg to achieve your
desired results.

The MultiCheckin component contains the following files:
* MultiCheckinManifest.zip

* manifest.hda

e components/doc_man.htm

» components/multi_checkin.hda

» components/multi_checkin_environment.cfg

» components/multi_checkin_resource.htm

» components/multi_checkin_templates.hda

* readme.txt

MultiCheckinManifest.zip

The MultiCheckinManifest.zip is the zipped file containing all of the files that
are part of the component. The Component Manager portion of the Content
Admin Server adds the ability for a properly zipped component file to be
automatically uploaded and installed with the Content Admin Server
application.

11-4 Programmer’s Reference Guide

Understanding the MultiCheckin Component

manifest.hda

The manifest.hda fileis at the heart of the Component Manager. Thisfileisused
by the Component Manager feature of the Content Admin Server to easily
upload and enable custom components without complicated installation
procedures, customized installation CDs or installation logic of third party
products. The purpose of the manifest.hdais to moveindividual filesthat are
located within a properly zipped component file into the correct Content Server
directories. For example, image files will be moved into the <home>/
weblayout/images directory/. However, this does not update the database.

For a component to be installed, removed, or unpackaged, the user must have a
properly formatted manifest.hdafile. Although simpleto create, if thefileis
improperly formatted, the Component Manager will not execute.

Typically, the manifest.hdafileis encapsulated in the zip file dlong with al files
to beinstaled. The only valid name for thisfile is manifest.hda. It must be on a
top level of the zip file directory structure and must contain at |east one result
set using this format:

@Resul t Set Mani f est
2

entryType

| ocation

@nd

Thismust be on atop level of the zip file directory structure and must contain at
least one ResultSet with entryType and location entries.

The entryType entry must be one of the following:

Entry Description
common Filesto be placed in <weblayout>/common/
images Filesto be placed in <weblayout>/images/
help Filesto be placed in <weblayout>/images/
component A component to be placed by default into
<home>/custom/...

Programmer’s Reference Guide 11-5

Understanding the MultiCheckin Component

11-6

Entry Description

classes A classfileto be placed in <home>/classes/
with certain restrictions

componentextra A file associated with a component, such asa

readme.txt file, or other documentation.

Note: There are certain restrictions oninstalling anew classfile. Thisinstaller isnot
intended as a patch utility for the Content Server, therefore it will not alow
placement of Java class filesinto the <home>/classes/intradoc/ directory, nor will it
place single files onto the <home>/classed directory. Class files must first be
packaged into directories and then can be placed into the <home>/classes directory.

The location entry indicates both the file'slocation in the zip file, and its
installed location. For example, directing the manifest.hdafileto the location c:/
<home>/custom would not alow a component to be installed on a server where
the Content Server resides in the d:/ directory. Accordingly, arelative path
should be used. It isthe responsibility of theindividual creating the component
to ensure that full path names are used as rarely as possible. Thiswill help
ensure that many different Content Server users can share the packaged
component.

Example Manifest

Thisis an example of a manifest.hdafile for acomponent:
@Resul t Set Mani f est
2
entryType
| ocation
conponent
My Conponent / MyConponent . hda
conponent Extra
MyConponent / r eadme. t xt
i mages
My Conponent /
@nd

Programmer’s Reference Guide

Understanding the MultiCheckin Component

Thisis an example of the accompanying .zip file structure:
mani f est . hda
component / MyConponent / MyConponent . hda
conmponent / MyConponent / ny_conponent _std_page. ht m
conponent / MyConponent / my_conponent _resour ces. ht m
conponent / MyConponent / r eadme. t xt
i mages/ MyConponent /i magel. j pg
i mages/ MyConponent /i mage2. j pg
The example defines these actions:

» The component MyComponent.hda and all files referenced by that
component are installed into the directory: <home>/custom/MyComponent/.

» Thereadme.txt will also be placed in this directory.

» Theimagesin the folder MyComponent/ are installed into the directory
<weblayout>/images/MyComponent/.

» AnentryType of common, help, or class worksin asimilar fashion to images.

components/doc_man.htm

Thisfile serves as one of the template files that will be implemented by the
Content Server and is the template file referenced in the
multi_checkin_template.hda. Thiswill beimplemented through the MergeRules
set in the multi_checkin.hdafile.

These are some of the contents of the components/doc_man.htm file:
<! DOCTYPE HTML PUBLIC "-//1ETF/ / DTD HTM.// EN'>

<htm >

<head>

<meta http-equi v="Content-Type" content="text/htm;
char set =i so- 8859- 1" >

<met a nane="GENERATOR' content="Intra.doc! 4.0">
<title>Content Managenent</title>
<$i ncl ude std_htm _head_decl arati ons$>

</ head>

Programmer’s Reference Guide 11-7

Understanding the MultiCheckin Component

<$i ncl ude body_def $>
<$i ncl ude std_page_begi n$>
<$i ncl ude std_header $>

<tabl e border="0" cell paddi ng="2" cel | spaci ng="2" w dt h="450">
<tr>

<td col span=4 <$if not
i sNavOnSi deBar $>al i gn="cent er " <$endi f $>>

<h3 cl ass=pageTi t| e>Cont ent Managenent </ h3>
</td>
</[tr>
<td wi dt h="30"> </t d>
<td>
<a href="<$Ht t pCgi Pat h$>?I dcSer vi ce=CHECKI N_NEW FORM' >
<i mg src="<$H t pl negesRoot $><$docnan_checki nnew_i mage$>"
align="mddl e" border="0" <$if conngr_btn_size$>

wi dt h=<$conngr _btn_si ze$>
hei ght =<$connmgr bt n_si ze$><$endi f $>></ a>

</td>
<t d>
<a href="<$Ht t pCgi Pat h$>?I dcSer vi ce=CHECKI N_NEW FORM'
cl ass=l argeTabl eEnt r y>New Check | n
</td>

<$i ncl ude content _type_checkin_formtable_cell $>

<[tr>

11-8 Programmer’s Reference Guide

Understanding the MultiCheckin Component

components/multi_checkin_resource.htm

The components/multi_checkin_resource.htm fileisatemplate file that contains
the code that allows the user to choose the content type at check intime. The
type of content chosen determines the metadata fields that will be displayed on

the page.

Thisis an example of the script from the multi_checkin_resource.htm file:
<htm >

<head>

<title>Resources for multi checkin conponent</title>

</ head>

<body>

<p align=center>Multi Checkin resources</p>

<I-- altered to upload the docunent type environment data any
tine the docunent types are shown on a page-->

<@ynami chtml std_docunent type fiel d&
<$i ncl ude super.std_docunent _type fiel d$>

<$hi ddenFi el ds = get Val ue("#active", #active.dDocType &
"_hide")$>

<$checki nReadOnly = get Val ue("#active", #active.dDocType &
" _checkin_readOnl y") $>

<$updat eReadOnly = get Val ue("#active", #active.dDocType &
" _update_readOnl y") $>

<@nd@
<I-- set the hidden and read only flags, and the default value --
>

<@lynami chtnml conpute_std field overrides@
<$i ncl ude super.conpute_std field_overrides$>

Programmer’s Reference Guide 11-9

Understanding the MultiCheckin Component

11-10

<$i f strlndexX (#active. hiddenFi el ds, #active.fieldName) >= 0%$>
<$i sFi el dH dden=1$> <$endi f $>

<$i f #active.isCheckin and strlndexOf(#active. checki nReadOnly,
#active.fiel dNane) >= 0%> <$i sFi el dl nf oOnl y=1$> <$endi f $>

<$i f #active.isUpdate and strlndexf (#active. updat eReadOnly,
#active.fiel dName) >= 0$> <3i sFi el dl nfoOnl y=1$> <$endi f $>

<$dynami cFi el dVal ue = get Val ue("#active", #active.dDocType & "_"
& fiel dName) $>

<$i f dynami cFi el dVal ue and i sChecki n$> <$fiel dval ue =
dynani cFi el dval ue$> <$endi f $>

<@nd@

<I-- this formwill allow the user to obtain a check in page for
cont ent

with the specified type -->
<@lynami chtml content _type checkin_formtable cell @
<f or m nanme=checki nNewGoFor m net hod=get acti on="<$Ht t pCgi Pat h$>">
<td col span=2>
<i nput type=hi dden nane=l dcServi ce val ue="CHECKI N NEW FORM >
<sel ect name=dDocType>
<$docTypesLi st = #active. Ml ti CheckinTypes & ","$>
<$i ndex = strlndexCf (docTypesList, ",")$>
<$l oopwhi | e not strEqual s(index, "-1")$>
<$current DocType = strSubstring(docTypesList, 0, index)$>
<$docTypesLi st = strSubstring(docTypesList, index + 1)$>
<$i ndex = strlndexCf (docTypesList, ",")$>

<option val ue="<$current DocType$>" <$if
st r Equal s(#acti ve. dDocType,
cur rent DocType) $>SELECTED<S$endi f $>><$cur r ent Doc Type$>

<$endl oop$>

</sel ect >

<input type=subnit value=" GO ">
</td>

Programmer’s Reference Guide

Understanding the MultiCheckin Component

</fornp
<@nd@

<I-- this include is overridden to enable the checkin pull-down
menu on the side navigation bar, along with the "Check in new
l'ink. Look for the tag "Ml ti Checki n conponent changes" bel ow
>

components/multi_checkin.hda

The components/multi_checkin.hdafileis the file that references your
components. The purpose of afile of thistypeisto direct the Content Server to
any custom defined resources.

Thisisthe contents of the multi_checkin.hdafile:
@roperties Local Data

Component Nane=Muil ti Checki n

@nd

@Resul t Set ResourceDefinition
4

type

filenane

tabl es

| oadCr der

resource

nmul ti _checkin_resource. htm
nul |

1

tenpl ate

nmul ti _checkin_tenpl ates. hda
nul |

1

Programmer’s Reference Guide 11-11

Understanding the MultiCheckin Component

envi ronnment

nmul ti _checki n_environment. cfg
Nul |

1

@nd

@Resul t Set MergeRul es
3

fronTabl e

toTabl e

col um

Mul ti Checki nTenpl at es
I ntradocTenpl at es
nane

@nd

components/multi_checkin_environment.cfg

Thisfileis used to display, hide, or manipulate metadata for the new content
checkin pages of the Content Server. This script determines how the metadata
fields for each content type selected is presented. This type of metadata
manipulation can be performed for any of the content-centered templates
(checkin_new.htm, checkin_sel.htm, doc_info.htm, update_docinfo.htm, and
std_query.htm) using different parameters.

All configurations of this nature can be handled in an environment-type
resource file. Each content type has alist of hidden fields, read-only fields and
default checking values for any of the fields. Changes require you to restart the
Content Server.

11-12 Programmer’s Reference Guide

Understanding the MultiCheckin Component

Thisis aportion of the script from the multi_checkin_environment.cfg file:
UseMul ti Checki nOnSi debar =t rue
Mul ti Checki nTypes=ADACCT, ADCORP, ADENG, ADHR

ADACCT _hi de=

ADACCT _checkin_readOnl y=

ADACCT updat e_readOnl y=

ADACCT _xComment s=This is the default comment for an ADACCT field.

ADCORP_hi de=
ADCORP_checki n_readOnl y=
ADCORP_updat e_r eadOnl y=xComment s

ADCORP_xComment s=This is the default comrent for an ADCORP fi el d,
whi ch cannot be changed on update.

ADENG_hi de=xComment s
ADENG checki n_readOnl y=
ADENG updat e_readOnl y=

ADHR hi de=
ADHR_checki n_r eadOnl y=xConmmrent s
ADHR updat e_readOnl y=xComment s

ADHR xComments=This is the default, unchangable coment for an
ADHR fi el d.

Programmer’s Reference Guide 11-13

Understanding the MultiCheckin Component

components/multi_checkin_templates.hda

To implement atemplate change, a MergeRule must be posted in the
multicheckin.hdafile. Thiswill be in the form of merging from the ResultSet
MultiCheckinTemplates into the default ResultSet IntradocTemplates using the
column name. The name will refer to the template page name entry,
DOC_MANAGEMENT _LINKS.

This is the script from the multi_checkin_templates.hdafile:
@esul t Set Mul ti Checki nTenpl at es

5

narme

cl ass

formype

filenane

description

DOC_MANAGEMENT_LI NKS

DocManagemnent

DocManagenent Li nks

doc_nman. htm

Page containing links to various docunment managenent functions

@nd

readme.txt

The readme.txt file documents the purpose of this component and directions for
installing it both manually and with the Component Wizard and Component
Manager tools.

11-14 Programmer’s Reference Guide

Understanding \Workflows and
Workflow Branching

Overview

Workflows are useful in the process of reviewing and approving content before
it isreleased and published to the website. They specify how content is routed
and who needs to review and approve it.

Workflows are defined and managed using Workflow Admin, which is one of
the tools accessed from the Administration page. Only persons with
administrator or sub-administrator privileges can create workflows. Defined
workflows can be turned on and off. This means that workflows can be
temporarily disabled, if required.

Note: The Content Management page contain alink called Active Workflows,
which displays all workflows that are currently enabled.

Note: The User Profile page contains alink called Workflows in Queue for [user],
which displaysalist of content items that the user needsto review.

© ©

A branching workflow allows a content item, or revision, to move from
workflow step to another workflow step based on a set of criteria and evaluated
Idoc Script. This can be used to alow revisions to share a common workflow
entry point, but then diverge depending on who the original author is, whois
currently working on the revision, and other revision metadata.

Programmer’s Reference Guide 12-1

Understanding Workflows and Workflow Branching

12-2

A workflow branch isinitiated through the occurrence of an event and the
evaluation of Idoc Script. Idoc Script has been enhanced with some very
particular workflow functions. These functions allow the designer of the
workflow to maintain extra revision state information and perform activities
such as extra notifications. As a conseguence, the system now maintains a state
file for each workflow revision.

Note: Refer to the Custom Scripting Reference Guide for information on Workflow
Script Functions, Workflow Step Event Scripts, and Workflow Script Variables.

Workflow Types

There are three types of workflows: basic, criteria, and sub-workflow. A
workflow becomes active in a system once isit enabled. All workflows are
bound to a security group. This means that any content item that belongsto a
workflow must be in that workflow security group on entry.

Basic Workflows

Basic workflows are workflows in which content is specifically assigned to the
workflow. This type of workflow requires someone to initiate the process. The
administrator or a sub-administrator selects one or more specific files for entry
into the workflow (using Content 1Ds), and defines the workflow steps and the
reviewers for each step.

Basic workflows consist of at least one named content item and an initial
contribution step with defined users. Optionally, it consists of multiple reviewer
and reviewer/contribution steps.

* When abasic workflow is enabled, initial revisions are created for therelated
content items and the contributors are notified that the workflow is active.

* When abasic workflow is disabled, the revisions for these content items are
deleted from the system.

Criteria Workflows

Criteria workflows are workflows in which any content matching predefined
criteria enters the workflow automatically upon check-in. The administrator or a
sub-administrator selects the entry criteriafor the workflow, consisting of a
security group and avalue for one content information (metadata) field, and
defines the workflow steps and the reviewers for each step.

Programmer’s Reference Guide

Understanding Workflows and Workflow Branching

For example, if strategic reports must always be reviewed and approved by key
individuals before being released, a criteriaworkflow could be set up for this
content type and security group. If a strategic report is then checked into
Stellent, aworkflow is automatically initiated to start the approval process.

Criteriaworkflows consist of an auto-contribution step and at least one reviewer
or reviewer/contributor step. A workflow enters a criteria workflow by
satisfying a metadata criteria during check in.

» When acriteriaworkflow is enabled, it becomes available to the system
during aninitial check in. At that time, the metadata for the revision is
evaluated against al active criteriaworkflow (for workflowsin the same
security group asthe revision). A revision could match several criteria
workflows, but it may only enter into one workflow.

* When acriteriaworkflow is disabled, al revisions in the workflow are
moved out of the workflow state. Unlike the basic workflow, the revisions
are not deleted.

Sub-Workflows

A sub-workflow is aworkflow that does not have an initial contribution step.
Sub-workflows are useful for splitting large, complex workflows into
manageabl e pieces. A file can enter a sub-workflow only through ajump from a
criteriaworkflow.

The Sub-workflow typeisrelated to the criteria workflow. However, the sub-
workflow does not have the initial contribution step. A revision can only enter a
sub-workflow through ajump. A sub-workflow can become a criteria workflow
by defining a criteria and vice-versa.

Workflow Steps

A workflow consists of one or more steps, and multiple users can be assigned to
review the content at each step. There are four types of steps:

» A contribution step istheinitial step of a basic workflow. Contributors are
defined when the workflow is created.

» Anauto-contribution step istheinitial step of acriteriaworkflow. There
are no predefined usersinvolved in this step.

* Inareviewer step, the assigned users can only approve or reject the file.
Editing is not allowed.

* Inareviewer/contributor step, users can edit thefile, if necessary, and then
approve or reject it.

Programmer’s Reference Guide 12-3

Understanding Workflows and Workflow Branching

12-4

If there is more than one user assigned to a step, it is possible to specify how
many of them need to approve the content before it moves to the next step.

All personsinvolved in aworkflow are notified about any actions they need to
perform for each step. Thisis done entirely through e-mail. E-mail messages
can also be sent to content authors and other users to inform them of the status
of the workflow.

Each step has three events: entry, update and exit. Each event consists of a script
that is evaluated at a well-defined time. The events have an effect on the
workflow only if ascript has been defined for it.

On entering a step, the entry script is evaluated. This event script consists of a
standard default script plus potentialy a user defined script. The default script
computes the number of times this step has been entered and the last time the
step has been entered.

The update event initiates.

» During atimed update cycle.

» Upon update of the revision's metadata.
» After an approval or check in.

The exit event script is evaluated when a revision has completed the step
requirements.

Jumps

Jumps enable you to customize workflows for your system, your content, and
your users. Jumps are created using Idoc Script, which is Stellent’ s proprietary
scripting language.

Typical uses of jumpsinclude:

» Specifying more than one metadata field as the criteriafor entering a
workflow.

e Taking action on content automatically after a certain amount of time has
passed.

» Defining different paths for files to move through the same workflow
depending on metadata and user criteria.

Note: Refer to “Workflow Step Event Scripts” in the Custom Scripting Reference
Guide for additional information.

Programmer’s Reference Guide

Understanding Workflows and Workflow Branching

Tokens

A token is apiece of Idoc Script that defines variable usersin aworkflow.
Tokens can be used for any of the following:

» Specify avariable user, such asthe original author or the author’s
supervisor.

* Include users and aliases in workflow jumps.
» Define users through conditional statements.

Note: Refer to “Workflow Script Functions” in the Custom Scripting Reference
Guide for additional information.

Programmer’s Reference Guide 12-5

Understanding Workflows and Workflow Branching

Workflow and Script Templates

12-6

Workflow Templates

Workflow templates are a quick way to reuse workflows that you have already
created. Each workflow template is an outline for a basic workflow, criteria
workflow, or sub-workflow that is stored in the Workflow Admin tool. A
workflow template is not tied to a security group, and it cannot include jumps.

For example, if thefirst and last step of several workflows need to be the same,
you could save these steps as aworkflow template, and then use the template as
the starting point for creating the individual workflows.

Script Templates

Script templates are a quick way to reuse jJumps that you have aready created.
Each script template is a piece of Idoc Script stored in the Workflow Admin
tool.

For example, if you have several workflow steps that require approval within
one week, you could save the jump script for this as atemplate, and then reuse
it.

Programmer’s Reference Guide

Understanding Workflows and Workflow Branching

Workflow Branching

A step event may move arevision from one workflow step to another workflow
step. Depending on the type of workflow, arevision may jump backwards and
forwards in the same workflow or into the step of a completely different
workflow. The system keeps careful track of the history of where arevision has
been, what jumps have been performed, entry counts and entry times and any
custom information that the designer of the workflow has chosen to maintain.

The flow consists of these basic steps.

Evaluating the script.

Actions performed on the Last Step.
Actions performed on Restart.
Actions performed on Exit.

Actions performed on Error.
Actions Performed on Reject.
Executing the script.

Evaluating the Script

1

2.
3.
4

Execute the update script.

Determine if the step has been completed.

If the step is finished, evaluate the exit script.

If the exit script moves us to another step:

a. Inform users of step that revision has entered step.
b. Evaluatethe entry script for this step.

c. If thistakesusto anew step, keep track of where we have been and
repeat.

If this specifies an exit, determine the exit step and repeat.

e. Determineif the step isfinished. This could be a notification step,
which is automatically finished, or it could be one requiring one or
more reviewers.

f. If the step isfinished, go to Actions Performed On Restart.

Programmer’s Reference Guide 12-7

Understanding Workflows and Workflow Branching

12-8

Actions Performed on the Last Step

1. Determineif the step has been completed.
2. Unwind the stack of parentslooking for jump steps.

3. For each jump step, determineif thereisareturn point. Stop once you have
found areturn point.

4, |f thereisareturn point, go to the return point and evaluate the entry script
and perform the actions in Evaluating the Script, step 4.

5. If thereisno return point, exit the workflow.

Actions Performed on Restart

1. After the execution of a script, determine if thisis arestart.

2. If thisisarestart of astep, evaluate the entry script and perform the actions
in Evaluating the Script, step 4.

Actions Performed on Exit

If the script specifies that the revision isto exit the workflow, go to Actions
Performed on the Last Sep, step 2.

Actions Performed on Error

If for any reason an error occurs in evaluating the script, ignore the script.
However, if the script evaluated correctly and for example, the target step is
invalid, fall into the exit scenario. See Executing the Script.

Note: A jump can specify itsreturn point as aside effect. It however isnot required
to define areturn point. Consequently, on error you may go back to areturn point
defined by another jump and not the jJump you originally came from. If there are no
return points, exit the workflow.

Actions Performed on Reject

Search through the stack of parents for a step that allows contribution. The first
contribution step that isfound is the target for the reject.

Programmer’s Reference Guide

Understanding Workflows and Workflow Branching

Executing the Script

1
2.
3.

4.

Evaluate the script.
On error, go to the closest return point.

Evaluate the entry script of the return point and go to Evaluating the Script,
step 4.

On error, repeat the previous step until there are no more return points and
exit the workflow.

@ Note: Be aware of loops. If we have already entered a step once before, then skip the
entry script execution. The stack has no repeats. If the revision is moved to a step
that has already been referred to in the stack, unwind the stack to the referenced step.

Programmer’s Reference Guide 12-9

Understanding Workflows and Workflow Branching

Workflow Information Storage

Database Tables

These tables have existed since version 4.0 and only afew columns have been
added for maintenance of the workflow design:

WorkflowAliases WorkflowHistory
WorkflowCriteria Workflows
WorkflowDocAttributes WorkflowStates
WorkflowDocuments WorkflowSteps

Associated Files

These associated files store workflow information:

File Description

Workflow Design Each workflow has design that maintains the
event script information. Located in the ~/data/
workflow/design directory.

Script Design The system allows for the creation of event
scripts outside of the context of a particular
workflow. The script templates can be used as
starter examples and allow for ease of sharing of
complicated scripts. Maintained in the ~/data/
workflow/script directory.

Revision State Thesefiles are also known as the revision's
Information companion file. Thisfile maintains the current
state of therevision in aworkflow. Located in ~/
data/workflow/states directory.

Saved companion Saved companion files are maintained in the ~/
files data/workflow/saved directory. This directory
maintains the latest state information for a
revision that has completed its workflow.

Tokens The list and definition of tokensislocated in ~/
data/workflow/tokens/tokens.hda.

12-10 Programmer’s Reference Guide

Understanding Workflows and Workflow Branching

Workflow Rules and Error Handling

A basic workflow may not jump to another workflow. The jump may only
take a revision to steps within the workflow.

A criteriaworkflow may only jump to a criteria or sub workflow belonging
to the same security group.

A jump to astep in an inactive workflow is an error. However, when initialy
defining atarget step for aworkflow step, the step is not validated. The target
step isvalidated when it is actually used.

If ajump takes you to an inactive workflow, the jump will be treated as an
error and the revision falls into the exit scenario.

An event script that has been badly defined and causes an error in execution
istreated asif it had never executed. However, if thisis an entry script then

the default entry script, which keeps track of entry time and number of times
entered, is still evaluated.

When jumping to a step that is already in the parent list, the parent list is
unwound. For example, if the progression has been step 1, step 2, step 3
and the revision is jumped to step_2, the parent list becomes step 1, step 2
not step_1, step 2, step_3, step_2. Thisis an attempt to avoid recursion.

The system does its best to avoid fast loops. These are loops that are
executed within the workflow engine without user interaction. If ajump
takes you to a step that has already been visited in the current cycle, the
workflow ignores the script, thereby refusing to calculate the jump. For
example, auser approvesarevision in step_a. On evaluation of the update
step, the revision ismoved to step_b. The entry script for step_b isevaluated,
it causes ajump to step_c. For step_c's entry script, the target step is step_b
and now we arein afast loop, since without user interaction or abreak in the
processing, we have returned to step_b. Consequently, the entry script for
step_bisignored. If it were not ignored, we would be in an infinite loop.

Slow loops are alowed. For example, loops that happen due to user
interaction or a break in workflow processing.

All script evaluation occurs inside a database transaction. This means any
serious errors or aborts that are encountered cause no change to either
database or companion file. This also means that no Idoc Script function
should take more than a negligible amount of time. Consequently, to trigger
and outside process, an ldoc Script function should be written to executein a
separate thread.

A reject causes the parent list to be unwound in search of a contribution step.

Programmer’s Reference Guide 12-11

Understanding Workflows and Workflow Branching

» Anexit of aworkflow takesthe revision to the most recently specified return
step. If noneis defined, the revision exits the workflow process. The parent
list is unwound accordingly.

12-12 Programmer’s Reference Guide

A

access level, 10-11

action types, 10-13
CACHE RESULT TYPE=5, 10-14
CODE_TYPE=3,10-13
EXECUTE_TYPE =2, 10-13
OPTION_TYPE =4, 10-14
QUERY_TYPE =1, 10-13

ADD_USER service, 10-12

Administration link, 2-8

Alias (database table), 10-3

AliasUse (database table), 10-3

assemblingthe ADMIN_LINK Stemplate page

and returns the page, 2-9
AuthorAddress, 10-25
awkward geometry, 2-10

B

bin directory, 2-12
body definition, 5-12
BODY deement, 5-12

C

CACHE_RESULT_TYPE = 5 (action type),
10-14

change form methods, 2-16

CHECKIN_LIST, 8-4

Programmer’s Reference Guide

CHECKIN_NEW_FORM, 8-4
CheckoutUserAddress, 10-25
class (IntradocTemplates column), 8-4
CODE_TYPE = 3 (action type), 10-13
column, 6-7
columns
IntradocTemplates, 8-3
MergeRules, 6-6
SearchResultTemplates, 8-7
component
columns, 7-2
location, 7-2
name, 7-2
file structure, 2-14
implementing, 7-2
removing, 7-3
structure, 7-1
columns, 7-2
implementing a component, 7-2
removing a component, 7-3
component architecture, 2-3
process, 3-5
component definition file, 3-6
componentsfile, 3-5
defining custom environment, 3-10
defining custom queries, 3-10
defining custom services, 3-13

Index

modifying resources, 3-6
modifying standard templates, 3-7
component architecture and the Content
Server, 2-7
server actions, 2-8
server behavior, 2-7
component definition
file, 3-6
HDA file, 3-15
component description, 11-4
doc_man.htm, 11-7
manifest.hda, 11-5
multi_checkin.hda, 11-11
multi_checkin_environment.cfg, 11-12
multi_checkin_resource.htm, 11-9
multi_checkin_templates.hda, 11-14
MultiCheckinManifest.zip, 11-4
readme.txt, 11-14
component file structure
consistent file structure, 2-14
component wizard, 1-3
components, 5-5
doc_man.htm, 11-7
file, 3-5
multi_checkin.hda, 11-11
multi_checkin_environment.cfg, 11-12
multi_checkin_resource.htm, 11-9
multi_checkin_templates.hda, 11-14
components.hda, 2-13
Config (databasetable), 10-3
config directory, 2-13
component.hda, 2-13
config.cfg, 2-13
config.cfg, 2-13
configuration file, 7-4
defining avariable, 7-5
referencing avariable, 7-6

Configuration Variables Load, 3-3
consistent
file structure, 2-14
Content Server loading, 8-1
Content Server services, 2-8
use Administration link to..., 2-8
assemblethe ADMIN_LINKS tem-
plate page and return the page, 2-9
providealogin prompt if not currently
logged in, 2-8
verify that the login has administrator
privileges, 2-9
content types, multi-checkin, 9-2
CONTROL_BEGIN_TRAN =4 (function
parameters), 10-14
CONTROL_COMMIT_TRAN = 8 (function
parameters), 10-15
CONTROL_IGNORE_ERROR = 1 (function
parameters), 10-14
CONTROL_MUST_EXIST = 2 (function
parameters), 10-14
CONTROL_MUST_NOT_EXIST =16
(function parameters), 10-15
Counters (database table), 10-3
create customizations, 2-2
Creating Custom Conversion Engines, 1-1
custom
components load, 3-4
environment resources, defining, 3-10
gueries, defining, 3-10
services, defining, 3-13
templates, defining, 8-10
Custom Scripting Reference Guide, 1-2
customizing
graphics, 2-10
awkward geometry, 2-10
|ost data, 2-10

Programmer’s Reference Guide

no addition/deletion, 2-10
options, 2-10

customizing graphics, 2-10

image format, 2-10

image referencing, 2-11
product functionality, 2-6
theinterface, 2-5

D
data binder, 5-8
database tables, 10-3

Alias, 10-3

AliasUse, 10-3

Config, 10-3

Counters, 10-3
DocFormats, 10-3
DocMeta, 10-4
DocMetaDefinition, 10-4
DocTypes, 10-4
DocumentAccounts, 10-4
DocumentHistory, 10-4
Documents, 10-4
ExtensionFormatMap, 10-4
OptionsList, 10-4
ProblemReports, 10-4
ProjectDocuments, 10-4
RegisteredProjects, 10-5
Revisions, 10-5
RoleDefinition, 10-5
SecurityGroups, 10-5
Subscription, 10-5
UserSecurityAttributes, 10-5
Uses, 10-5
WorkflowAliases, 10-5
WorkflowCriteria, 10-5
WorkflowDocAttributes, 10-6
Workflows, 10-6

Programmer’s Reference Guide

Index

WorkflowStates, 10-6
WorkflowSteps, 10-6
dCheckoutUser, 10-25
dDocAuthor, 10-25
dDocTitle, 10-24
defining
avariable, 7-5
custom environment Resources, 3-10
custom queries, 3-10
HDA file, 3-12
HTM format, 3-11
custom services, 3-13
component definition HDA file, 3-15
MyServices, 3-13
custom templates, 8-10
description
IntradocTemplates column, 8-5
SearchResultTemplates column, 8-9
development
instance, 2-14
recommendations, 2-14
change form methods, 2-16
component file structure, 2-14
development instance, 2-14
naming conventions, 2-15
read server errors, 2-17
Development Kit, 1-1
component wizard, 1-3
SDK documentation, 1-1
displaying the multi-checkin menu, 9-2
DOC_INFO service, example, 10-16
DOC_INFO template, 10-17
doc_man.htm, 11-7
DocFormats (database table), 10-3
DocMeta (database table), 10-4
DocMetaDefinition (database table), 10-4
DocService (service type), 10-10

Index

DocTypes (database table), 10-4
document class (template pages), 8-4
DocumentA ccounts (database table), 10-4
DocumentHistory (database table), 10-4
Documents (database table), 10-4
dStatus, 10-24
dynamic content

including in atemplate, 5-15
dynamic content resources, 5-11

body definition, 5-12

page begin, 5-12

page end, 5-15

structure, 5-11
dynamic include, 4-3
dynamic pageretrieval, 2-8
dynamic resource table, column type, 6-3
dynamic table, 4-4

E
environment, 4-8
column type, 6-3
environment file, multi-checkin, 9-2
content types, 9-2
displaying the menu, 9-2
error message, 10-12
examine source code, 2-2
create customizations, 2-2
reingtall, 2-2
EXECUTE_TYPE = 2 (action type), 10-13
ExtensionFormatMap (database table), 10-4

F

filename
IntradocTemplates column, 8-5
ResourceDefiniton column, 6-3
SearchResultTemplates column, 8-8

files used for customization, 2-12

bin directory, 2-12
config directory, 2-13
shared/config directory, 2-13
weblayout directory, 2-13
FileService (service type), 10-10
flexdata,(Sear chResultTemplates column), 8-8
formtype
IntradocTemplates column, 8-5
SearchResultTemplates column, 8-7
fromTable, 6-7
function name, 10-14
function parameters, 10-14
CONTROL_BEGIN_TRAN =4, 10-14
CONTROL_COMMIT_TRAN =8, 10-15
CONTROL_IGNORE_ERROR =1,
10-14
CONTROL_MUST_EXIST =2, 10-14
CONTROL_MUST_NOT_EXIST = 186,
10-15

H
HDA file
structure, 5-2
type, 5-2
data binder, 5-8
HDA section type-@ResultSet, 5-4
HDA section-type@Properties, 5-3
purpose, 5-2
section types, 5-2
structure, 5-2
HDA section type
@Properties, 5-3
structure, 5-3
@ResultSet, 5-4
sample ResultSet, 5-7
structure, 5-6
HTM file type, 5-9

Programmer’s Reference Guide

dynamic content resources, 5-11
including dynamic content in atemplate,
5-15
reports, 5-9
template, 5-9
HTM tables, 5-9
structure, 5-10
HTML editor, 2-4
HTML include, 4-2
HTML/CSS, 2-3

I
IdcCommand Reference Guide, 1-2
Idoc Script, 2-3
image
format, 2-10
referencing, 2-11
implementing a component, 7-2
including dynamic content in atemplate, 5-15
internal initialization occurs, 3-3
Configuration Variables Load, 3-3
IntradocReports, 5-5
IntradocTemplates, 5-5, 8-2
columns, 8-3
class, 8-4
description, 8-5
filename, 8-5
formtype, 8-5
name, 8-4
STANDARD_QUERY_PAGE, 8-4
table, 4-7

J

Java programming, 2-4

JavaScript, 2-4
debugger, 2-4

Programmer’s Reference Guide

Index

L

loading, Content Server, 8-1

loadOrder, ResourceDefinition column, 6-4
location (component column), 7-2

|ost data, 2-10

M
manifest.hda, 11-5
example, 11-6
menu, displaying multi-checkin, 9-2
merge rules, 3-5
MergeRules, 6-6
columns, 6-6
example, 6-7
merging newscores into scores, 6-10
merging scores into newscores, 6-11
newscores, 6-9
scores, 6-8
MergeRules columns, 6-6
column, 6-7
fromTable, 6-7
toTable, 6-7
merging
newscores into scores, 6-10
scores into newscores, 6-11
MetaService (service type), 10-10
modify source code, 2-2
create customizations, 2-2
reinstall, 2-2
upgrade, 2-2
modifying
resources, 3-6
standard templates, 3-7
multi_checkin.hda, 11-11
multi_checkin_environment.cfg, 11-12
multi_checkin_resource.htm, 11-9
multi_checkin_templates.hda, 11-14

Index

multi-checkin
content types, 9-2
environment file, 9-2
multi-checkin content types, 9-2
multi-checkin menu display, 9-2
menu display, 9-2
MultiCheckinManifest.zip, 11-4
multiple browsers, 2-4
MyServices, 3-13

N

name
component column, 7-2
IntradocTemplates column, 8-4
query definition table column, 10-2
SearchResultTemplates column, 8-7
service resources, 10-9

naming conventions, 2-15
observe case, 2-16
use appropriate file name extensions, 2-16
use consistent naming conventions, 2-16
use unique file names, 2-16

newscores, 6-9
merging into scores, 6-10

no addition/deletion, 2-10

@)

observe case, 2-16

OPTION_TY PE = 4 (action type), 10-14

OptionsList (database table), 10-4

outfilename (SearchResultTemplatescolumn),
8-8

P

page assembly, 3-1
standard page beginning, 3-2
standard page ending, 3-2

standard page header, 3-2
page begin, 5-12

std_page_begin resource, 5-12
page end, 5-15

std_page end, 5-15
page retrieval, 2-8

dynamic page retrieval, 2-8

static page retrieval, 2-8
PageHandlerService (service type), 10-10
parameters

guery definition table column, 10-3
PING_SERVER service, 10-12
ProblemReports (database table), 10-4
Programmer’ s Reference Guide, 1-2
ProjectDocuments (database table), 10-4
providing alogin prompt if not currently

logged in, 2-8

Q
QisSubscribed, 10-26
query, 4-5
column type, 6-3
guery definition table columns, 10-2
name, 10-2
parameters, 10-3
queryStr, 10-3
query definition tables, 10-2
query resource, 10-1
database tables, 10-3
example, 10-7
guery definition
table columns, 10-2
tables, 10-2
QUERY _TYPE =1 (action type), 10-13
gueryStr (query definition table column), 10-3

Programmer’s Reference Guide

R
read server errors, 2-17
readme.txt, 11-14
referencing avariable, 7-6
RegisteredProjects (database table), 10-5
reinstall, 2-2
removing a component, 7-3
reports (shared/config directory), 2-13
reportsload, 3-4
required skills, 2-3
component architecture, 2-3
HTML/CSS, 2-3
Idoc Script, 2-3, 2-4
Java programming, 2-4
JavaScript, 2-4
required tools, 2-3
HTML editor, 2-4
JavaScript debugger, 2-4
multiple browsers, 2-4
Software development kit, 2-4
text editor, 2-4
ResourceDefinition, 5-5, 6-2, 6-3
columns, 6-3
example, 6-4
loadOrder, 6-4
tables, 6-4
ResourceDefinition columns, 6-3
dynamic resource table, 6-3
environment, 6-3
filename, 6-3
query, 6-3
services, 6-3
static resource table, 6-3
template, 6-3
type, 6-3
resources, 5-9
resources (shared/config directory), 2-13

Programmer’s Reference Guide

Index

ResultSet name
components, 5-5
Intradoc Templates, 5-5
IntradocReports, 5-5
ResouceDefinition, 5-5
SearchResultsTemplates, 5-5
ResultSet, sample, 5-7
retrieve pages, 2-7
Revisions (database table), 10-5
RoleDefinition (database table), 10-5
run
asearch engine service, 2-7
asystem server service, 2-7

S
sample ResultSet, 5-7
scores, 6-8
merging into newscores, 6-11
SDK See Software development kit, 2-4
SDK documentation, 1-1
Creating Custom Conversion Engines, 1-1
Custom Scripting Reference Guide, 1-2
IdcCommand Reference Guide, 1-2
Programmer’ s Reference Guide, 1-2
searching services, 2-9
SearchResultsTemplates, 5-5
SearchResultTemplates, 8-6
columns, 8-7
description, 8-9
filename, 8-8
flexdata, 8-8
formtype, 8-7
name, 8-7
outfilename, 8-8
table, 4-7
section types (HDA file structure), 5-2
SecurityGroups (database table), 10-5

Index

server actions, 2-8
Content Server services, 2-8
pageretrieval, 2-8
searching services, 2-9
server behavior, 2-7
server information flow, 2-7
web browser requests, 2-7
server information flow, 2-7
server start up actions, 3-3
custom components load, 3-4
internal initialization occurs, 3-3
standard resources, templates, and reports,
34
service, 4-6
attributes, 10-10
type, 10-10
name, 10-9
resource, 10-8
resource structure, 10-8
service (service type), 10-10
service actions, 10-13
function name, 10-14
function parameters, 10-14
CONTROL_BEGIN_TRAN =4,
10-14
CONTROL_COMMIT_TRAN =8,
10-15
CONTROL_IGNORE_ERROR =1,
10-14
CONTROL_MUST_EXIST =2,
10-14
CONTROL_MUST_NOT_EXIST =
16, 10-15
types, 10-13

CACHE_RESULT_TYPE =5, 10-14

CODE_TYPE =3, 10-13
EXECUTE_TYPE =2, 10-13

OPTION_TYPE =4, 10-14
QUERY_TYPE =1, 10-13
Service resources
access level, 10-11
actions, 10-13
DOC_INFO service example, 10-16
error message, 10-12
example, 10-16
service attributes, 10-10
service name, 10-9
subjects notified, 10-12
sub-service, 10-11
template page, 10-11
service type, 10-10
DocService, 10-10
FileService, 10-10
MetaService, 10-10
PageHandlerService, 10-10
service, 10-10
UserService, 10-10
WorkflowService, 10-10
services
column type, 6-3
shared/config directory, 2-13
reports, 2-13
resources, 2-13
templates, 2-13
Software development kit, 2-4
SQL, 2-4
standard page
beginning, 3-2
ending, 3-2
header, 3-2
standard resources, templates, and reports
load, 3-4
STANDARD_QUERY_PAGE
(IntradocTemplate entry), 8-4

Programmer’s Reference Guide

static pageretrieval, 2-8

static resource table, column type, 6-3
std_page_begin, 5-12

std_page_end, 5-15

structure See component structure, 7-1
subjects notified, 10-12

Subscription (database table), 10-5
sub-service, 10-11

T
tables (Resour ceDefinition column), 6-4
template, 4-7
column type, 6-3
page, 10-11
templates, 3-4
defining (custom), 8-10
file, 8-2
IntradocTemplates, 8-2
SearchResultTemplates, 8-6
VerityTemplates, 8-6
templates (shared/config directory), 2-13
templates and reports, 5-9
HTM tables, 5-9
resources, 5-9
templates.hdafile
IntradocTemplates table, 4-7
SearchResultTemplates table, 4-7
VerityTemplates table, 4-7
text editor, 2-4
toTable, 6-7
type, ResourceDefinition coluumn, 6-3

U

Unableto retrieve information for
{dDocName}, 10-24

Unable to retrieve revision history for
{dDocName}, 10-26

Programmer’s Reference Guide

Index

Understanding Component Architecture, 2-1,
2-2
component architecture and the Content
Server, 2-7
customizing options, 2-10
customizing product functionality, 2-6
customizing the interface, 2-5
devel opment recommendations, 2-14
files used for customization, 2-12
required skills, 2-3
required tools, 2-3
Understanding Component Assembly, 3-1
component architecture process, 3-5
merge rules, 3-5
page assembly, 3-1
server start up actions, 3-3
Understanding Content-Centered Template
Metadata, 9-1
multi-checkin environment file, 9-2
Understanding HDA and HTM File Types, 5-1
HDA file type, 5-2
HTM filetype, 5-9
Understanding Query and Service Resources,
10-1
query resource, 10-1
service resource, 10-8
Understanding Resource Types, 4-1
dynamic table, 4-4
environment, 4-8
HTML include, 4-2
query, 4-5
service, 4-6
template, 4-7
Understanding Templates, 8-1
Content Server loading, 8-1
defining custom templates, 8-10
IntradocTemplates, 8-2

Index

SearchResultTemplates, 8-6
templatefile, 8-2
VerityTemplates, 8-6
Understanding the Component Definition
File, 6-1
MergeRules, 6-6
ResourceDefinition, 6-2
Understanding the Components HDA File, 7-1
component structure, 7-1
configuration file, 7-4
Understanding the MultiCheckin Component,
111
component description, 11-4
Understanding Workflow Brnching, 12-1
upgrade, 2-2
use appropriate file name extensions, 2-16
use consistent naming conventions, 2-16
use unique file names, 2-16
Users (database table), 10-5
UserSecurityAttributes (database table), 10-5
UserService (service type), 10-10

\%
variable
defining, 7-5
referencing, 7-6
verifying that the login has administrator
privileges, 2-9
VerityTemplates, 8-6
VerityTemplates table, 4-7

W
web browser requests, 2-7

retrieve pages, 2-7

run a search engine, 2-7

run a system server service, 2-7
weblayout directory, 2-13

I-10

WorkflowAliases (database table), 10-5

WorkflowCriteria (database table), 10-5

WorkflowDocAttributes (database table),
10-6

WorkflowDocuments, 10-6

Workflows (database table), 10-6

WorkflowService (service type), 10-10

WorkflowStates (database table), 10-6

WorkflowSteps (database table), 10-6

Programmer’s Reference Guide

	Cover Page
	Table of Contents
	The Development Kit
	Overview
	SDK Documentation
	Creating Custom Conversion Engines
	IdcCommand Reference Guide
	Custom Scripting Reference Guide
	Programmer's Reference Guide

	Component Wizard

	Understanding Component Architecture
	Overview
	Examine or Modify Source Code
	Create Customizations
	Reinstall or Upgrade

	Required Skills and Tools
	Required Skills
	Required Tools

	Customizing the Interface
	Customizing Product Functionality
	Component Architecture and the Content Server
	Server Behavior
	Server Actions
	Page Retrieval
	Content Server Services
	Search Services

	Customizing Options
	Customizing Graphics
	Image Format
	Image Referencing

	Files Used for Customization
	Bin Directory
	Config Directory
	Shared/Config Directory
	Weblayout Directory

	Development Recommendations
	Development Instance
	Component File Structure
	Consistent File Structure

	Naming Conventions
	Use Unique File Names
	Use Appropriate File Name Extensions
	Use Consistent Naming Conventions
	Observe Case

	Change Form Methods
	Read Server Errors

	Understanding Component Assembly
	Overview
	Page Assembly
	Server Start Up Actions
	Internal Initialization Occurs
	Standard Resources, Templates, and Reports Load
	Custom Components Load

	Merge Rules
	Component Architecture Process
	Components File
	Component Definition File
	Modifying Resources
	Modifying Standard Templates
	Defining Custom Environment Resources
	Defining Custom Queries
	Defining Custom Services

	Understanding Resource Types
	Overview
	HTML Include
	Dynamic Table
	Query
	Service
	Template
	Environment

	Understanding HDA and HTM File Types
	Overview
	HDA File Type
	HDA File Structure
	Section Types

	Purpose
	HDA Section Type: @Properties
	HDA Section Type: @ResultSet
	Data Binder

	HTM File Type
	Templates and Reports
	Resources
	HTM Tables
	Structure

	Dynamic Content Resources
	Structure

	Including Dynamic Content in a Template

	Understanding the Component Definition File
	Overview
	ResourceDefinition
	ResourceDefinition Columns
	type
	filename
	tables
	loadOrder
	Example ResourceDefinition

	MergeRules
	MergeRules Columns
	fromTable
	toTable
	column
	Example MergeRules

	Understanding the Components HDA File
	Overview
	Component Structure
	Component Columns
	name
	location

	Implementing a Component
	Removing A Component

	Configuration File
	Defining a Variable
	Referencing a Variable

	Understanding Templates
	Overview
	Content Server Loading

	Templates File
	IntradocTemplates
	IntradocTemplates Columns
	name
	class
	formtype
	filename
	description

	VerityTemplates
	SearchResultTemplates
	SearchResultTemplates Columns
	name
	formtype
	filename
	outfilename
	flexdata
	description

	Defining Custom Templates

	Understanding Content-Centered Template Metadata
	Overview
	Multi-Checkin Environment File
	Multi-Checkin Menu Display
	Multi-Checkin Content Types

	Understanding Query and Service Resources
	Overview
	Query Resource
	Query Definition Tables
	Query Definition Table Columns
	name
	queryStr
	parameters

	Database Tables
	Example Query

	Service Resource
	Service Resource Structure
	Service Name
	Service Attributes
	Service Class
	Access Level
	Template Page
	Sub-Service
	Subjects Notified
	Error Message

	Service Actions
	Type of Action
	Function Name
	Function Parameters

	Example Service

	Understanding the MultiCheckin Component
	Overview
	Component Description
	MultiCheckinManifest.zip
	manifest.hda
	Example Manifest

	components/doc_man.htm
	components/multi_checkin_resource.htm
	components/multi_checkin.hda
	components/multi_checkin_environment.cfg
	components/multi_checkin_templates.hda
	readme.txt

	Understanding Workflows and Workflow Branching
	Overview
	Workflow Types
	Basic Workflows
	Criteria Workflows
	Sub-Workflows

	Workflow Steps
	Jumps
	Tokens

	Workflow and Script Templates
	Workflow Templates
	Script Templates

	Workflow Branching
	Evaluating the Script
	Actions Performed on the Last Step
	Actions Performed on Restart
	Actions Performed on Exit
	Actions Performed on Error
	Actions Performed on Reject
	Executing the Script

	Workflow Information Storage
	Database Tables
	Associated Files

	Workflow Rules and Error Handling

	Index

