
VERSION 7.6.1

Stellent® Content Integration Suite

UCPM API Developer’s Guide

Copyright
© 1996–2005 Stellent, Inc. All rights reserved. No part of this document may be reproduced or transmitted in any
form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage
and retrieval system without written permission from the owner, Stellent, Inc., 7500 Flying Cloud Drive, Suite 500,
Eden Prairie, Minnesota 55344 USA. The copyrighted software that accompanies this manual is licensed to the
Licensee for use only in strict accordance with the Software License Agreement, which the Licensee should read
carefully before commencing use of this software.

Stellent is a registered trademark, and the Stellent logo, Stellent Content Server, Stellent Content Management,
Stellent Site Studio, Stellent Content Integration Suite, Stellent Content Portlet Suite, Stellent Desktop Integration
Suite, Stellent Dynamic Converter, Stellent Content Publisher, Stellent Inbound Refinery, and Stellent Image Server
are trademarks of Stellent, Inc. in the USA and other countries.

Adobe, Acrobat, the Acrobat Logo, Acrobat Capture, Distiller, Frame, the Frame logo, and FrameMaker are
registered trademarks of Adobe Systems Incorporated.

Apache is a registered trademark of the Apache Software Foundation. Stellent Content Integration Suite includes
software developed by the Apache Software Foundation (http://www.apache.org/).

BEA is a registered trademark, and WebLogic is a trademark of BEA Systems, Inc.

HP-UX is a registered trademark of Hewlett-Packard Company.

IBM, Informix, and WebSphere are registered trademarks of IBM Corporation.

Kofax is a registered trademark, and Ascent and Ascent Capture are trademarks of Kofax Image Products.

Linux is a registered trademark of Linus Torvalds.

Microsoft is a registered trademark, and Windows, Word, and Access are trademarks of Microsoft Corporation.

Oracle is a registered trademark of Oracle Corporation.

Plumtree is a registered trademark of Plumtree Software, Inc.

Portions Copyright © 1991-1997 LEAD Technologies, Inc. All rights reserved.

Red Hat is a registered trademark of Red Hat, Inc.

Sun is a registered trademark, and Solaris, Sun ONE, iPlanet, Java, and all Java-based trademarks are trademarks
of Sun Microsystems, Inc.

Sybase is a trademark of Sybase, Inc.

UNIX is a registered trademark of The Open Group.

Verity is a registered trademark of Verity, Incorporated.

All other trade names are the property of their respective owners.

Contents

1 / Introduction .. 5

Software development kit (SDK) .. 5
CIS Administration Application Help system.. 6

2 / Understanding the UCPM API .. 8

Accessing the UCPM API .. 8
UCPM methodology ... 9
CIS initialization ... 9
Spring framework .. 11

CIS Initialization strategy .. 12
CIS Server initialization ... 12
CIS Client Initialization .. 14

Integration environments .. 16
Web environment... 16
Application server environment ... 17
Standalone environment ... 18

Common method objects.. 18
IContext .. 18
ICommandExecutionProperties.. 19

Interacting with the UCPM API .. 21
Properties and the ISCSObject interface... 22

Property accessors... 22
Property object types ... 23
Property collections ... 23

Adapter configuration file ... 24
Adapter element .. 25
Config element .. 25
Sample adapter configuration file .. 27

3 / Understanding the Active API... 29

Acccessing the Active API ... 29
Understanding the Active API objects ... 30

Interface ISCSActiveObject.. 30
Interface ISCSServerResponse ... 31

Understanding the Active API servlets.. 31
Servlet parameters... 32
Servlet security .. 35
Servlets and API interaction .. 35

Using the Active APIs ... 36
Active Search API... 36
Active File API ... 37
Active Document APIs .. 38
Active Workflow API ... 39

4 / Understanding the Fixed API.. 41

Accessing the Fixed API.. 41
Understanding the Fixed API objects ... 42
Using the Fixed APIs .. 42

Fixed User API... 42

Fixed Search API.. 43
Fixed Document API... 48
Fixed Process API .. 51

5 / Understanding the Common API ... 56

Accessing the Common API... 56
Common metadata maps ... 57
Developing with the Common API.. 58
Using the Common API... 59

Common Search API... 59
Common Document API.. 60

6 / Extending Commands... 63

About APIs.. 63
ICommand definition .. 64
Creating an ICommand object with the CommandBuilder SDK.. 64

Command development kit ... 65
SCS Command components .. 66

Adding a new command ... 68
Building a command .. 71

A / Migrating from Version 7.2 .. 73
Initialization--START HERE .. 73
API calls.. 73
Property names and data access... 76

Glossary.. 78

Index .. 97

UCPM API Developer’s Guide Introduction
CHAPTER 1

Introduction

The Universal Content and Process Management (UCPM) API offers access to the
Stellent server products by exposing their services and data in a unified object
model. The UCPM API is modeled into a set of Services APIs, which are API calls
that communicate with the target server, and into ISCSObject objects, which are the
returned value objects from the server.

This guide provides conceptual and other information about the UCPM API,
describes command invocation and execution, and explains how commands can be
extended.

In this section:

! Software development kit (SDK)

! CIS Administration Application Help system

Notes

! The information in this guide is subject to change as product technology
evolves and as hardware and operating systems are created and modified.

! Due to the technical nature of browsers, databases, web servers, and
operating systems, Stellent, Inc. cannot warrant compatibility with all versions
and features of third-party products.

Software development kit (SDK)
Stellent Content Integration Suite includes the UCPM API Software Development Kit
(SDK), which comes bundled with a number of samples and build scripts that allow
you to quickly get up and running; calling and customizing the CIS APIs.

The following table lists the major components of the SDK, located in the
<install_dir>/SDK/ directory inside the main distribution zip file.

Directory Description

CommandBuilder Ant scripts and support files for extending the CIS APIs.

library The necessary libraries used by the SDK components.

Samples/Code Examples Samples that show how to execute various pieces of the UCPM API.

Samples/
DirectoryCommands

The code used to demonstrate extending the CIS layer; referenced in the
CommandBuilder SDK document.

Samples/
StellentWebSample

A sample web application that demonstrates the SDK working with the
Active, Fixed, and Common APIs.

WebAppTemplate A template for web applications built with CIS. Copy these files into your
own WAR deployment; CIS libraries and initialization is already set up in
this template.
5

UCPM API Developer’s Guide Introduction
CIS Administration Application Help system
You may need assistance with the CIS Administration Application, which is the
administration interface for Stellent Content Integration Suite. Both online Help and
the complete CIS Installation Guide can be accessed from any of the CIS
Administration Application screens.

! Each dialog box in CIS Administration Application Help has a Help icon,
which you can click to view a topic that describes the functionality of that
dialog box.

! Once you have opened any Help topic, click the Show Navigation button
in the navigation bar to view the complete CIS Installation Guide online.

The online Help can be viewed in a web browser such as Internet Explorer or
Netscape Navigator, with conventional web browser controls (Back, Forward,
Refresh, and so on) used to navigate the Help system.

The online Help contains the following navigation options:

! Contents: The Contents tab contains an expandable list of Help topics. Click a
book icon to expand or collapse that section of the Help system and then
select the desired Help topic to view a topic.

! Index: The Index tab provides immediate access to individual Help topics by
keyword.

! Search: The Search tab provides a full-text search of the Help system. Type
the word or phrase you are looking for and then click Go (or press Enter on
your keyboard).

! Favorites: The Favorites tab provides a means to save topics that you have
found useful and anticipate viewing again. (When viewing a topic, click
Favorites and then click Add to add the topic to your Favorites list.) The
Favorites tab does not display if your browser does not support the Java applet
used by the Help system.
6

UCPM API Developer’s Guide Introduction
The online Help also includes a toolbar with the following options
:

Notes

! The Help systems use a secure Java applet to display the Contents, Index,
Search, and Favorites tabs. If the Java applet is not installed or enabled in the
web browser used to view Help, a JavaScript rendition of Help will display,
instead. If both Java and JavaScript are disabled in the web browser, the
browser will not be able to display Help.

! The Java applet is not supported by Internet Explorer on UNIX, Netscape 4.x
on Macintosh, Netscape 6.x on any platform, or by any machine running a
newer version of the Java Runtime Environment (JRE) 1.3.1_02. For these
browsers and operating systems, the JavaScript rendition of Help will display
(assuming it is not disabled in the browser).

Toolbar Definition

Highlights the title of the topic currently being viewed in the Contents tab.
Note: If you open a Help topic by clicking the Help button in a dialog box, the Show
Navigation button will display, instead.

Displays the topic that precedes the currently displayed topic. (The order of topics can be
seen on the Contents tab.)

Displays the topic that follows the currently displayed topic. (The order of topics can be seen
on the Contents tab.)

Opens a new, blank email message addressed to Stellent Technical Support, with the name
of the Help topic in the Subject line. Please use this feature to provide feedback to Stellent
on the topic itself or how the topic is documented.

Prints the currently displayed topic by using your web browser print feature.

Opens a PDF version of the CIS Installation Guide. You can read the PDF version online or
print it out, if you prefer.

Connects to the Stellent web site (www.stellent.com), where you can learn more about
Stellent products, upcoming events, and technical support.
7

UCPM API Developer’s Guide Understanding the UCPM API
CHAPTER 2

Understanding the UCPM API

The UCPM API offers access to Stellent servers by exposing their services and data
in a unified object model. The UCPM API is modeled into a set of Services APIs,
which are API calls that communicate with the target server, and into ISCSObject
objects, which are the value objects returned from the server.

In this section:

! Accessing the UCPM API

! UCPM methodology

! CIS initialization

! Spring framework

! Integration environments

! Common method objects

! Interacting with the UCPM API

! Properties and the ISCSObject interface

! Adapter configuration file

Note: See the JavaDocs for information on the Class/Interface, Field, and Method
descriptions. The complete CIS JavaDoc is located in the /docs/cis-javadoc-all.zip file
(the /docs/cis-javadoc-ucpm.zip file contains only the UCPM API information).

Accessing the UCPM API
The UCPM API offers access to Stellent servers by exposing their services and data
in a unified object model. The UCPM API is modeled into a set of Services APIs,
which are API calls that communicate with the target server, and into ISCSObject
objects, which are the value objects returned from the server.

The UCPM API is available on the CISApplication class via the getUCPMAPI ()
method. The getUCPMAPI () method returns a reference to the IUCPMAPI object,
allowing access to all UCPM API objects. Public interface IUCPMAPI is the locator
for these API objects:

! getActiveAPI () returns a reference to the SCSActiveAPI object. The “Active
API” classes communicate with and handle content stored on Stellent Content
Server.

! getFixedAPI () returns a reference to the SCSFixedAPI object. The “Fixed API”
classes communicate with and handle content stored on Stellent Image Server.

! getCommonAPI () returns a reference to the SCSCommonAPI object. The
“Common API” classes communicate with both Stellent Content Server and
Stellent Image Server, by providing a common set of APIs that are shared
between both the Active API and the Fixed API. These include searching,
contribution, and information querying.
8

UCPM API Developer’s Guide Understanding the UCPM API
UCPM methodology
The UCPM API is stateless; all method calls pass in the necessary state to the
method. This means that you can share the reference to the CISApplication class
across threads.

The UCPM API—including the Active, Fixed, and Common implementations—are all
called in a similar fashion. The first parameter for all methods is an IContext bean:

! ISCSContext for the Active API. The interface ISCSContext is the context
object used when communicating with Stellent Content Server.

! ISISContext for the Fixed API. The interface ISISContext is the context object
used when communicating with Stellent Image Server.

! ISCSCommonContext for calling some of the Common APIs. The interface
ISCSCommonContext identifies which adapters to query and what user
information to use.

The IContext bean holds context information, such as username and session ID, that
is used in the underlying service APIs to identify the user invoking the given
command.

The UCPM API is a service-oriented API that returns value objects, implemented as
ISCSObjects. However, calling methods on the value objects themselves do not
modify content on the server; one must call the UCPM API and pass in the value
object as a parameter before the changes can be applied.

Example:

SCSActiveAPI activeAPI = m_cisApplication.getUCPMAPI ().getActiveAPI ();
ISCSActiveDocumentID documentID = activeAPI._createActiveDocumentID ("10");
ISCSActiveContent content = activeAPI.getDocumentInformationAPI ().
 getDocumentInformation (m_context, documentID);

//call does not change object on server
content.setTitle ("New Title");

//now item is updated on server after this call
activeAPI.getDocumentUpdateAPI ().updateContent (context, content);

CIS initialization
Stellent Content Integration Suite (CIS) is initialized by accessing the CISApplication
class, which resides in the com.stellent.cis package. The CISApplication class has a
number of static initialization methods which allows you to initialize CIS in server or
client mode:

Note: Also see “Properties and the ISCSObject interface” on page 22.

! In server mode, CIS can execute commands to the various Stellent servers on
its own; it has no other dependencies.

! In client mode, CIS connects to another CIS server instance, and all CIS
requests are sent to the CIS server to be processed. This allows for one CIS
server to centralize the configuration of the various Stellent services that it will
communicate with, and allows the server to share caching and other server-
side resources between the CIS clients.
9

UCPM API Developer’s Guide Understanding the UCPM API
A CIS instance initialized in server mode can execute commands on its own; a CIS
instance initialized in client mode must connect to another CIS server instance to
execute commands.

CIS initialization should happen once per application. The CIS APIs are stateless and
therefore the initialized CISApplication instance can be safely shared between
threads. CIS can be run inside a web application, as a standalone EAR file, or in a
standalone JVM process. The initialization is slightly different for each configuration.

Server mode

To initialize the CIS instance in server mode, the initializeServer () methods are used.
The initializeServer () methods requires that the adapterConfig parameter be
defined. The adapterConfig parameter is the path to the adapter configuration file
(adapterconfig.xml).

Note: The adapter configuration file contains XML-formatted configuration
information for communicating with the various content servers and image servers.
See “Adapter configuration file” on page 24 for more information.

Optionally, you may specify the server type using the serverType parameter. If no
server type is specified, the class will attempt to determine the server type
automatically.

For example, to initialize in standalone mode (standalone JVM / no CIS clients):

CISApplication.initializeServer (CISApplication.TYPE_STANDALONE,
 new File ("adapterconfig.xml").toURL());

To initialize for a WebLogic application server:

CISApplication.initializeServer (CISApplication.TYPE_WEBLOGIC,
 new File ("adapterconfig.xml").toURL());

To initialize and allow CISApplication to determine the server type (if the server type
cannot be determined, it defaults to standalone):

CISApplication.initializeServer (new File ("adapterconfig.xml").toURL());

Client mode

To initialize the CIS instance in client mode, the intializeClient () methods are used.
However, there must be a server mode running that accepts CIS clients and the
connection method must then be determined by the type of environment.

For a connection to a CIS server running on a J2EE server, use the intializeClient ()
method that takes in a JNDI context object that is connected to the target server.
This method requires that the context parameter be defined. The context parameter
is the initialized context object to query the CIS Configuration EJB

Alternatively, you can use an initialized RMIRegistry instance to connect to a CIS
server running on a Tomcat environment. This intializeClient () method requires that
the registry parameter be defined. The registry parameter is the initialized registry
where the CIS configuration instance is located

For clients running in the same J2EE server (or cluster) as the CIS instance, you can
simply create the default InitialContext and pass that into the initializeClient () call to
connect to the running CIS server:
10

UCPM API Developer’s Guide Understanding the UCPM API
InitialContext ctx = new InitialContext ();
CISApplication cisApplication = CISApplication.initializeClient (ctx);

To connect to a J2EE server running on a remote machine, you need to specify the
appropriate arguments to the InitialContext to point it at the correct server. For
example, the code below connects a CIS client to a WebLogic host running on a
remote server:

Note: You must include the WebLogic libraries in order to connect to a WebLogic
server if running in an external client outside the J2EE server.

Hashtable connectionArgs = new Hashtable ();
connectionArgs.put (Context.PROVIDER_URL, “t3://servername:7001”);
connectionArgs.put (Context.INITIAL_CONTEXT_FACTORY,
 “weblogic.jndi.WLInitialContextFactory”);
InitialContext ctx = new InitialContext (connectionArgs);
CISApplication application = CISApplication.initializeClient (ctx);

When running against a remote J2EE instance, as is the case of WebSphere, the
JNDI names are sometimes different (as you are no longer operating in the
java:comp/env context).

Programmatically, you can implement the IJNDILookupStrategy interface and
handle the mapping of the JNDI names to the appropriate names for your special
case. There is already an implementation of this for WebSphere, because
connecting to a remote WebSphere instance requires a complete path in the cluster
for each of the JNDI names. For example, the following code connects to a remote
WebSphere instance using a WebSphere naming strategy:

Hashtable connectionArgs = new Hashtable ();
connectionArgs.put (Context.PROVIDER_URL,
 “corbaloc:iiop:servername:9080”);
connectionArgs.put (Context.INITIAL_CONTEXT_FACTORY,
 “com.sun.jndi.cosnaming.CNCtxFactory”);
InitialContext ctx = new InitialContext (ctx);
IJNDILookupStrategy lookupStrategy =
 new WebsphereRemoteLookupStrategy (“servername”, “server1”);
CISApplication application =
 CISApplication.initializeClient (ctx, lookupStrategy);

The client can also initialize without specifying any parameters. In this case, the
CISApplication class looks in the JNDI tree for a configuration object placed by the
CIS server instance. This is a useful mechanism for initializing multiple CIS clients
that are in different web applications but deployed in the same application server as
the CIS server.

CISApplication.initializeClient ();

Spring framework
CIS uses the Spring Framework, based upon the Inversion of Control (IoC) and
Dependency Injection (DI) patterns, which allows developers to wire classes
together in ways that reduces coupling. It does this by providing a central and
11

UCPM API Developer’s Guide Understanding the UCPM API
automated way to build associations between classes thereby reducing unnecessary
dependencies between those classes.

Extending CIS with the Spring Framework

CIS uses the Spring Framework to dynamically configure itself at runtime. At startup,
CIS attempts to load the configuration file: /META-INF/resources/cis-client-services-
custom.xml from the classpath. Creating this file, adding entries to it, and adding it
to the classpath will cause the Spring Framework to load your classes and inject
their dependencies. This file provides an additional point of integration with CIS.

To learn more details on the Spring Framework and Spring syntax see:

http://www.springframework.org/

scripting and processing engine

CIS uses an open-source tool for turning XML into executable code. This Java and
XML based scripting and processing engine, called Jelly (an Apache/Jakarta project),
allows developers to script their XML. For input, it reads in an XML document and
can produce dynamic events which can be turned back into XML. If you are familiar
with the Apache project Velocity, then the syntax will be familiar to you.

During initialization, CIS uses Jelly to preprocess XML configuration files. These files
then get passed to the Spring Framework. The Spring Framework uses the XML to
create the required Java beans and their associations.

To learn more about Jelly see:

http://jakarta.apache.org/commons/jelly

CIS Initialization strategy
When we talk of CIS initialization, we usually mean one of two ways: server and
client. The server component of CIS receives command requests, executes those
requests and returns the results to the client. The client component of CIS creates
the command request and sends it to the server for execution. The server
communicates directly with Stellent Content Server while the client communicates
directly to the server. The cis-server application fills the role of “server” while the
cis-admin application fills the role of “client.”

Both the server and client initialize similarly with one important difference: the client
gets its Spring injected configuration from the server application while the server
application loads its configuration from the classpath.

CIS Server initialization
At startup, the servlet (SCSInitializeServlet) begins the CIS server initialization
process. It attempts to load various properties from the web.xml file and classpath
(i.e., cis-initialization.properties). It then passes those properties to the static
method CISApplication.initialize(…).

The following table describes the order of operations:
12

UCPM API Developer’s Guide Understanding the UCPM API
Class / Method Description

SCSIntitialize
init(ServletConfig)

Called by the web application container during initialization of the web
application.
Load properties from web.xml
Load properties from classpath: /cis-initialization.properties
Call CISApplication.initialize(properties) [see below]
Via the CISWebHelper class, it sets the CISApplication and the
command application instance as an attribute on the servlet context

CISApplication
initialize(properties)

Called by the init(…) method of an object instance of SCSInitialize.
Calls CISApplication.initializeServer(properties)

CISApplication
initializeServer(properties)

Called by CISApplication.initialize(properties)
Creates the adapter config URL (used to eventually load the adapter
config)
Creates temporary directory
Determines Server type (i.e. weblogic, websphere, etc)
Determines whether server should support options like: (EJB, JMS,
JCA, RMI)
Calls initializeServer (serverType, adapterConfigUrl, temporaryDirectory)

CISApplication
initializeServer (serverType,
adapterConfigUrl,
temporaryDirectory)

Called by CISApplication.initializeServer(properties)
CISApplication.initializeServer(properties)
Creates bean services URL (cis-services.jxml)
! /META-INF/resources/server/cis-services.jxml
Calls initializeServer (serverType, beanServicesURL, adapterConfigURL,
temporaryFileDirectory)

CISApplication
initializeServer (serverType,
beanServicesURL,
adapterConfig,
temporaryFileDirectory)

Called by CISApplication.initializeServer (serverType, adapterConfigUrl,
temporaryDirectory)
Creates a new CommandServer object
Initializes the Command Server object with the bean services URL
Create a new adapter config factory and initialize it
! Parse the adapter config (adapterconfig.xml)
! Create the adapters.
! For SCS adapters use:

/META-INF/resources/adapter/adapter-services-scs.jxml
Creates a new CISApplication obj passing in the commandServer and
serverType. The CISApplication constructor is responsible for printing a
message to the console that the server has been initialized.
13

UCPM API Developer’s Guide Understanding the UCPM API
CIS Client Initialization
For the CIS administration application, the CIS client application gets initialized via a
call from CommandAppInitializer (a Struts PlugIn). The CommandAppInitializer loads
a properties file (/WEB-INF/cis-initialization.properties). It also holds the path to (/
WEB-INF/cis-administrationapp-services.xml).

These files get passed to the static method CISApplication.initialize(properties)
where it determines if this is a client or a server initialization.

The following table describes the order of operations:

CommandServer
new ()

Created by CISApplication.initializeServer (serverType,
beanServicesURL, adapterConfig, temporaryFileDirectory)
Creates a JellyResourceLoader
Loads the cis-resources resource bundle (for Internationalized server
messages)

CommandServer
initialize(beanSvcsURL)

Called by CISApplication.initializeServer (serverType, beanServicesURL,
adapterConfig, temporaryFileDirectory)
Creates the Jelly enabled XML file: cisinit.jxml
Copies the bean services URL file to the cisinit.jxml
Initializes itself using the cisinit.jxml file. This basically loads the bean
definitions contained in the cisinit.jxml file.
Have Spring Load Bean Definitions
! Sets the bean factory
! Sets the Jelly enabled bean definition reader.
! Loads the bean definitions
! Process the cisint.jxml file. Here Jelly gets used to evaluate the cis-

services.jxml file (through the use of JellyResourceLoader,
JellyResourceDecorator, JellyHelper).

! The bean services file (cis-services.jxml) causes the following files
also to get evaluated:
/META-INF/resources/server/cis-command-services.jxml
/META-INF/resources/shared/cis-api-services.jxml
/META-INF/resources/commandbeans-lwapi.xml
/META-INF/resources/command-services-lwapi.xml
/META-INF/resources/commandbeans-active.xml
/META-INF/resources/command-services-active.xml
/META-INF/resources/commandbeans-fixed.xml
/META-INF/resources/command-services-fixed.xml
/META-INF/resources/commandbeans-common.xml
/META-INF/resources/command-services-common.xml
/META-INF/resources/commandbeans-custom.xml

Sets itself as the system bean factory (within the Spring Framework)
Sets itself as a class variable

Class / Method Description

CommandAppInitializer
init(ActionServlet,
ModuleConfig)

Called by struts
Loads the cis-initialization.properties resource bundle
Calls CISApplication.initialize(properties)
Sets the CISApplication as an instance of WebApplication
Sets WebApplication as an attribute on the servlet context

CISApplication
initialize(properties)

Called by SCSInitialize
Calls CISApplication.initializeClient(properties)

Class / Method Description
14

UCPM API Developer’s Guide Understanding the UCPM API
initializeClient(properties) Called by CISApplication.initialize(properties)
Using the properties, it determines how to connect to server (JNDI,
RMI, URL, default)
Unless specified in the properties, it calls initializeClient()
Returns an instance of CISApplication

initializeClient () Called by initializeClient(properties)
Creates a new CommandClient
Calls CommandClient.connect()
Creates a new CISApplication passing in the command client object
(CommandClient).

CommandClient
new ()

Created by CISApplication.initializeClient (properties)
Creates a JellyResourceLoader
Loads the cis-resources resource bundle (for Internationalized client
messages)

CommandClient
connect ()

Loads /META-INF/resources/client/cis-client-services.jxml
! Creates the JellyResourceLoader
Initializes the command client with the bean services URL (i.e. cis-
client-services.jxml)

CommandClient
connect(context,
lookupStrategy)

Called by CommandClient connect()
Gets configuration bean via a JNDI lookup:
! ‘stellent/command/configuration’
On the server side, the CommandConfigurationBean via the
CommandConfigReader loads the ‘cis-client-services.jxml’ file:
! /META-INF/resources/client/cis-client-services.jxml
Calls initialize(configString). The configString is the string
representation of the XML configuration that was obtained from the
server.

Class / Method Description
15

UCPM API Developer’s Guide Understanding the UCPM API
Integration environments
CIS can be integrated into a web environment, an application server environment, or
a standalone environment. Each method is described in detail below.

Web environment
A sample template for a web application is available in the /SDK/WebAppTemplate/
directory. This template is complete and ready for use with CIS 7.6. It contains the
necessary entries in the web.xml file for initializing the CIS application. It also
contains the CIS-related servlets and the necessary JAR files for CIS (located in the
/WEB-INF/lib/ sub-directory). The JavaServer Pages Standard Tag Library (JSTL) tags
are included, too.

The /WEB-INF/ sub-directory contains the adapterconfig.xml file, which is the
adapter configuration file that is read at initialization and defines for the CIS layer
the Stellent server(s) to communicate with. By default, there is one adapter, called
myadapter, that points to a content server on localhost at port 4444.

Note: See “Adapter configuration file” on page 24 for more information.

The /WEB-INF/ sub-directory can immediately be bundled, as is, into a WAR file
(using a zip tool such as WinZip) and then deployed into any Servlet 2.3–compatible
servlet engine, such as Tomcat 4.x or 5.x.

CommandClient
connect(configString)

Called by CommandClient connect(context,lookupStrategy)
Creates the temporary client configuration file: cisinit.jxml
Copies the configString to that file
Calls initialize (resourceLocation, refresh)

CommandClient
initialize(resourceLocation,
refresh)

Called by CommandClient.connect(configString)
Initializes itself using the cisinit.jxml file. This basically loads the bean
definitions contained in the cisinit.jxml file.
Have Spring Load Bean Definitions
! Sets the bean factory
! Sets the Jelly enabled bean definition reader.
! Loads the bean definitions
! Process the cisint.jxml file. Here Jelly gets used to evaluate the cis-

services.jxml file (through the use of JellyResourceLoader,
JellyResourceDecorator, JellyHelper).

The bean services file (cis-services.jxml) causes the following files also
to get evaluated:
/META-INF/resources/client/cis-client-j2ee-services.xml
/META-INF/resources/shared/cis-api-services.jxml
/META-INF/resources/commandbeans-lwapi.xml
/META-INF/resources/command-services-lwapi.xml
/META-INF/resources/commandbeans-active.xml
/META-INF/resources/command-services-active.xml
/META-INF/resources/commandbeans-fixed.xml
/META-INF/resources/command-services-fixed.xml
/META-INF/resources/commandbeans-common.xml
/META-INF/resources/command-services-common.xml
/META-INF/resources/commandbeans-custom.xml
/META-INF/resources/server/adapter-services-scs.jxml

Class / Method Description
16

UCPM API Developer’s Guide Understanding the UCPM API
When writing code in the template, you can use the already initialized
CISApplication instance to obtain UCPM API objects for communicating with the
Stellent servers.

For example, if we add a new JavaServer Page called “search.jsp”, it would look like
the following:

<%-- JSTL tag library --%>
<%@ taglib uri="/WEB-INF/tlds/c.tld" prefix="c" %>

<%-- CIS Application object placed in servlet context by the SCSInitialize servlet.
 Get the CIS Application and make a query --%>
<%
 CISApplication cisApplication = (CISApplication) request.getSession().
 getServletContext().getAttribute ("CISApplication");
 SCSActiveSearchAPI searchAPI = cisApplication.getUCPMAPI ().
 getActiveAPI ().getSearchAPI ();
 //create a context
 ISCSContext context = cisApplication.getUCPMAPI ().
 getActiveAPI ()._createSCSContext ();
 context.setUser ("sysadmin");

 //execute the search
 ISCSActiveSearchResponse response = searchAPI.search (context,
 "dDocAuthor <substring> 'sysadmin'", 20);
%>
<!-- model the search results as desired -->

The SCSInitializeServlet places the initialized CISApplication class as an attribute in
the javax.servlet.ServletContext with the name “CISApplication”. The CISApplication
instance is available to the entire web application and is thread-safe; the one
instance can be shared across the application.

Application server environment
Once CIS is deployed in the target application server, you can communicate with the
CISApplication by initializing the CISApplication as a “client.” To do this, you need
to:

 1. Assemble the client application (EAR, WAR, etc.).

 2. Place all the libraries from the “standalone” version into the client application.

 3. In the application startup code, initialize the CISApplication instance, using the
intializeClient() method:

CISApplication.intializeClient()

This should be done only once; the CISApplication instance can be shared
throughout the application

Typically, you can use CISApplication.intializeClient() without any parameters if
CIS is also deployed on the same application server.

 4. Make the CISApplication instance available to the entire application; typically,
in web applications this is done by using the ServletContext.setAttribute()
method.
17

UCPM API Developer’s Guide Understanding the UCPM API
All client applications must have the correct version of the Stellent CIS libraries,
which are available in the “standalone” directory of the CIS distribution. After CIS is
initialized, calls can be made to the CIS layer, as in the previous example.

Standalone environment
CIS can be integrated into a “standalone” application. A standalone application is an
application that runs outside the context of a J2EE application server or servlet
engine (i.e., a command line or Swing application).

The first step is to take all the libraries from the standalone directory and place
them in your application classpath. Then, copy the adapter configuration file
(adapterconfig.xml) from the standalone directory into your application
environment, where it can be accessed at runtime and you can modify it according
to your Stellent server configuration.

Note: See “Adapter configuration file” on page 24 for more information.

The CISApplication instance then needs to be initialized. The initialized
CISApplication instance is thread-safe and can be shared by the application.
Initialization can be done with the following lines of code:

//load the adapterconfig.xml file
File adapterConfig = new File ("adapterconfig.xml");

//initialize the CISApplication in standalone mode
CISApplication cisApplication = CISApplication.initializeServer
 (CISApplication.STANDALONE, adapterConfig.toURL());

Common method objects
The common method objects are IContext (generic context used for communication
with the Command APIs) and ICommandExecutionProperties (used to set command
execution flags and asynchronous flags).

IContext
The interface IContext is the generic context used for communication with the
Command APIs. This interface handles contextual information to determine the
current caller identity, the target adapter, etc.

The context should be populated with the username and adapter name. The
adapter name is determine by the adapterconfig.xml file and the username can be
any valid user ID for the target server.

IContext has two sub-interfaces: SCSContext and ISISContext (both ISCSContext
and ISISContext extend the IContext interface).

! ISCSContext is the context object used for the Active APIs and represents a
users operating context when communicating with the content server.

! ISISContext is the context object used for Fixed APIs and represents a users
operating context when communicating with the image server.
18

UCPM API Developer’s Guide Understanding the UCPM API
The context objects can be created by using the _create methods on their
corresponding APIs. Thus, ISCSContext can be created from the SCSActiveAPI, and
ISISContext can be created from the SCSFixedAPI.

//create an ISCSContext
ISCSContext context =
 m_cisApplication.getUCPMAPI ().getActiveAPI ()._createSCSContext ();

//create an ISISContext
ISISContext context =
 m_cisApplication.getUCPMAPI ().getFixedAPI ()._createSISContext ();

Once the context is created, it should be populated with a username and the
adapter name. This can be done by using the accessor methods on the IContext
bean.

context.setUser ("sysadmin");
context.setAdapterName ("myadapter");

The Common API will take either an ISCSCommonContext or an IContext object.
ISCSCommonContext is a special kind of context that is used as a container for
ISCSContext and ISISContext. It is required in APIs that federate information
between a number of different adapters (it identifies which adapters to query and
what user information to use). In instances where the call only operates against one
adapter at a time, a single IContext is required.

//create an ICommonContext
ISCSCommonContext context =
 m_cisApplication.getUCPMAPI ().getCommonAPI ()._createCommonContext ();

Once the ISCSCommonContext adapter is created, multiple adapters can be added
to it. This is done using the ISCSCommonContext.addContext() method. Any number
of adapters can be added; all the adapters added to the ISCSCommonContext are
then used individually during a Common API call.

The same ISCSContext object can be used for multiple queries and across threads.
In a web application context, the easiest method is to add the IContext object to the
session and retrieve it from the session for each query.

Note: We have provided an sample web application (located in /SDK/Samples/
StellentWebSample) that has a login method that first validates the username
against the content server and, if successful, adds the IContext object to the
HttpSession object. See the LoginActionHandler class in the src/com/stellent/sdk/
web/sampleapp/handlers/login directory for more details.

The IContext object is also populated with a globally unique session ID when it is
created. The session ID can be useful for identifying one session from another and
stays the same for the duration of the context object. The session ID can be set by
the user if the target application wishes to supply its own session ID. The only
requirement is that the identifying session ID string be unique.

ICommandExecutionProperties
The interface ICommandExecutionProperties handles properties that can affect the
execution of a given command via a Command API method. All available APIs have
two versions: one takes an ICommandExecutionProperties object as its first
19

UCPM API Developer’s Guide Understanding the UCPM API
parameter, the other does not. The ICommandExecutionProperties are optional and
further define the execution path the command will take once it is passed into the
command layer. The ICommandExecutionProperties object can be used to set
command execution flags and asynchronous flags.

Command execution flags

The ICommandExecutionProperties object can modify the behavior of an API by
calling setValidateCommand (). If the isValidateCommand () method returns false,
the Command Bean's validation method will not be called. The default value for the
flag is true.

Available methods allow the setting of custom, API-specific properties on the
ICommandExecutionProperties object. These properties are interpreted different by
the underlying APIs.

! In the Active API, any available properties via the method
ICommandExecutionProperties.getProperties() are sent to the content server
upon execution. This allows the user to specify extra parameters that the
command might not include.

! In the Fixed API, the ICommandExecutionProperties.getProperties() are
ignored.

Asynchronous flags

The available APIs can execute asynchronously (execute in another process and
allow for the method to return immediately). The ICommandExecutionProperties
object allows someone to make an asynchronous call by calling the setAsynchronous
() method on the ICommandExecutionProperties object.

//perform a checkin asynchronously
ICommandExecutionProperties properties =
 m_cisApplication.getCommandFacade ().createExecutionProperties ();
properties.setAsynchronous (true);

//get the checkin API
ISCSActiveDocumentCheckinAPI checkinAPI =
 m_cisApplication.getUCPMAPI ().getActiveAPI ().getDocumentCheckinAPI ();

//perform the checkin (assume other parameters were created)
checkinAPI.checkinFileStream (properties, context, content, contentID, stream);

//since this is asynchronous, the return value is null...

The asynchronous invocation is available only when CIS is deployed on an
application server that supports the Java Messaging Service (JMS). If the
ICommandExecutionProperties object is passed to a CIS instance that does not
support JMS (that is, if it is deployed on a standalone JVM), then setAsynchronous
() is ignored and it will execute synchronously. Only through an explicit call to a
UCPM API method that takes an ICommandExecutionProperties object will an
asynchronous invocation take place.

After the asynchronous command is executed, the command result object is
broadcasted on a JMS topic with the JNDI name stellent/jms/CommandResultTopic.
Listening to this topic will allow you to retrieve the results of the asychronous
operation. The result are sent as a javax.jms.ObjectMessage class, with the internal
object being a ICommandResult object. This allows you access to both the
command that executed the query and the object that resulted from that execution.
if an error occurred during execution, calling the ICommandResult.getException ()
20

UCPM API Developer’s Guide Understanding the UCPM API
method will return the error that occurred during processing of the command. If
there was an error, then the ICommandResult.getResult () method will return null.

Interacting with the UCPM API
With an initialized CISApplication instance, the getUCPMAPI () method (of the
CISApplication object) returns a reference to the IUCPMAPI object, allowing access
to all UCPM API objects. The interface IUCPMAPI is the locator for the various API
objects in the UCPM API. The IUCPMAPI object has methods to get references to
the Active, Fixed, and Common APIs. This allows you to access the necessary APIs
and begin making calls through the UCPM API to the target server.

! getActiveAPI () returns a reference to the SCSActiveAPI object (for
communicating with the content server).

! getFixedAPI () returns a reference to the SCSFixedAPI object (for
communicating with the image server).

! getCommonAPI () returns a reference to the SCSCommonAPI object (for
calling some of the Common APIs).

Calling API objects using newly instantiated ISCSObject objects

Many UCPM API calls take in an ISCSObject or an interface that inherits from
ISCSObject. For example, in the ISCSActiveDocumentInformationAPI (Active API) the
getDocumentInformation () method takes as a parameter a ISCSActiveDocumentID
object.

Note: The fully qualified method name is “CISApplication.getUCPMAPI
().getActiveAPI ().getDocumentInformationAPI ()”.

In such cases, to obtain a reference to a valid object to pass in as a parameter, you
either can retrieve the object reference from another ISCSObject or create a new
instance of the ISCSObject using the one of the appropriate _create methods
available on the APIs. The _create methods allow you to create a new ISCSObject
and populate it.

For example, if you wanted to query for document information, but only had the
document ID, you would do the following:

ISCSActiveDocumentInformationAPI documentInfoAPI =
 m_cisApplication.getUCPMAPI ().getActiveAPI ().
 getDocumentInformationAPI ();

//create the document ID
ISCSActiveDocumentID documentID =
 m_cisApplication.getUCPMAPI ().getActiveAPI ().
_ createActiveDocumentID ("12345");
ISCSDocumentInformationResponse response =
 documentInfoAPI.getDocumentInformation(context, documentID);

For any API that requires an ISCSObject, there should be a _create method
available that allows you to create a new instance of the API object. These _create
methods are all client-side methods; they do not make calls to the target server.
They are to be treated as “constructors” for the ISCSObject implementations.
21

UCPM API Developer’s Guide Understanding the UCPM API
Properties and the ISCSObject interface
The interface ISCSObject is the base interface for all objects with metadata in the
UCPM API. Thus, all UCPM API objects are inherited from ISCSObject. The interface
ISCSObject allows for the retrieval and setting of the object properties. The objects
returned from calls to the UCPM API are value objects—that is, beans (reusable
software components) that encapsulate data from the server call, not live objects.
Updating or modifying the objects in any fashion will not affect server data; only by
directly calling a method on a given UCPM API can the server data be modified.

Property accessors
Most implementations of ISCSObject have their own specific property “accessor”
methods. However, all properties can be retrieved by calling the getProperty ()
method on the ISCSObject. The ISCSProperty.getProperty () method will return an
ISCSProperty object. From this object you can get the property value or property
information using these methods:

! getValue () returns the property value. If the property has a null value, calling
getValue () will result in a null reference.

! getDescriptor () returns the property descriptor that describes the contents
of the property value.

//use the response object from the previous example and retrieve the content object
ISCSActiveContent content = response.getContent ();

//get the title property
String title = content.getTitle ();

//get the title by using the ISCSObject getProperty method
title = content.getProperty ("title").getValue ().getStringValue ();

The ISCSObject property methods may throw a PropertyRetrievalException if an
error occurs during the lookup of a given property. Since the
PropertyRetrievalException is a RuntimeException it does not have to be caught
directly in your code. Common cases for the exception to be thrown is when a
property is asked for but does not exist or when the property value contains invalid
data. You can catch this exception and query the exception class for more details on
the specific reason for the error.

ISCSProperty also allows for setting property values back into the property object.
To do this, you can use an appropriate “set” method or call setProperty () and pass
in the bean property name (both are valid and both will set the property value on
the target object).

//set the title - using the content object from the previous example
content.setTitle ("My New Title");

//set using the setProperty method
content.setProperty ("title", "My New Title");
22

UCPM API Developer’s Guide Understanding the UCPM API
Property object types
A property object type is determine by the return value of the property method on
the ISCSObject. When using the generic getProperty() method, the
ISCSPropertyValue has methods to get both the value of the property and the value
as a specific object type (e.g., boolean, float, long, etc.).

Note: The ISCSPropertyValue is retrieved via the getValue () method on the
returned ISCSProperty object.

When setting a property via the generic setProperty () method, it is important that
the property value passed into the method is of the correct type or can be
converted to the appropriate type via simple BeanUtils property conversion.

Note: Apache BeanUtil is a utility for populating bean properties from the
org.apache.commons project.

If we take a look at the ISCSActiveContent object, the property readOnly is type
boolean. Therefore, in the following example, the first three methods will
successfully set the property value and the last method will not:

//correct
content.setReadOnly (true);
content.setProperty ("readOnly", Boolean.TRUE);
content.setProperty ("readOnly", "true");

//incorrect
content.setProperty ("readOnly", "not a boolean");

Since the setProperty () method takes an object as the second parameter, we must
use the boolean encapsulation. Also, as mentioned, the method uses the BeanUtils
property conversion and therefore the string “true” converts to the boolean value
TRUE. As shown in the example above, passing a property value that cannot be
converted (e.g., “not a boolean”) will result in an exception.

Property collections
The available list of properties can be retrieved using the getProperties () method on
the ISCSObject interface. This will return all of the available properties for a given
object. This allows you to build generic views of an object regardless of the API from
which it originated (Active, Fixed or Common).

//using the content item from the previous example
Collection properties = content.getProperties ();

//iterate through the collection
for (Iterator it = properties.iterator (); it.hasNext ();) {
 ISCSProperty property = (ISCSProperty)it.next ();
 String name = property.getDescriptor ().getName ();
 ISCSPropertyValue value = property.getValue ();
 if (value != null) {
 System.out.println (name + " = " + value.getStringValue ());
 }
}

In the above example, the value object was checked for a null reference. If the
property does not have a value, the ISCSPropertyValue will be null. Another way to
23

UCPM API Developer’s Guide Understanding the UCPM API
deal with this situation is to call ISCSObject.getProperties() with a filter. For
example, we can ask for only those properties that have a value (i.e. are non-null):

//retrieve only the properties with values
Collection properties = content.getProperties (ISCSObject.FILTER_NULL_VALUE);

Conversely, we can ask for the properties that do not have a value, as in the next
example:

//now retrieve only the properties without a value
Collection nullProperties =
 content.getProperties (ISCSObject.FILTER_NULL_VALUE, true);

The property filters can also be combined using the OR operator into a bitmask that
contains all the filters to use. For example, if we want to filter out the read-only and
null properties, we can use the following code:

Collection customProperties =
 content.getProperties
 (ISCSObject.FILTER_NULL_VALUE | ISCSObject.FILTER_READ_ONLY);

And, as in the previous examples, we can ask for the converse and return only those
properties that were null and read-only, by using the other version of the
getProperties () method that takes in a boolean operation as in the following
example:

Collection customProperties =
 content.getProperties
 (ISCSObject.FILTER_NULL_VALUE | ISCSObject.FILTER_READ_ONLY, true);

Adapter configuration file
The adapter configuration file (adapterconfig.xml) contains XML-formatted
configuration information for communicating with your content server and image
server instances. It specifies for the CIS layer which servers to open communications
with.

A single connection to a server is called an adapter; any number of adapters can be
configured in the adapterconfig.xml file. The adapterconfig.xml file is required to
initialize the CISApplication instance.

If your CIS instance is deployed in a Web environment in server mode, you can use
the CIS Administration Application to configure an adapter:

 1. Browse to the CIS Administration Application (http://localhost:port/scscis).

 2. Click Adapter Configuration.

 3. Click Create new SCS Adapter or Create new SIS Adapter and enter the
appropriate values. These will vary, depending on your installation.

 4. If you need assistance, click Help.

Note: See “Secure Socket Layer (SSL) Communication” in the CIS Installation guide
for information on enabling Secure Socket Layer (SSL) communication
24

UCPM API Developer’s Guide Understanding the UCPM API
Adapter element
Each adapter configuration is a separate element in the XML markup. The adapter
element has four attributes as shown in the following table:

A sample adapter element is shown below:

<adapter type="scs" default="true" name="myadapter" resourceName="pool1">

Config element
Within the config element is a set of property elements that define the adapter-
specific properties. The SCS or “active” adapter uses different configuration
elements that the SIS or “fixed” adapter. The configuration elements for both are
explained below.

SCS adapter configuration elements

An SCS or “active” adapter communicates with Stellent Content Server (SCS). The
config element for a SCS adapter has four general attributes as shown in the
following table:

A sample SCS configuration element is shown below:

Adapter attributes Description

type The type of adapter; “scs” represents a connection to a content server;
“sis” represents a connection to an image server; if not specified, the
default is “scs”.

default If true, then this is the default adapter for this type; only one default
adapter for a given type is allowed.

name The adapter name.

resourceName Required only for adapters of type “scs”. The name of the server resource
used by the adapter. If deployed in a non-J2EE environment, this is the
name of a resource pool that handles the server requests. Otherwise, this
is the JNDI name of the JCA adapter that handles the server requests.
EDIT--- the name of the resource used to talk to the content server. On
J2EE servers, this is the JCA JNDI name; on non-J2EE servers, this is the
name of the resource pool used to handle the connections.

Property name Description

post The port of the content server (usually 4444).

host The hostname or IP address of the content server.

type These values may be used:
! socket — Uses the content server socket communication layer.
! mapped — Uses shared directories to transfer the files for file upload

and download.
! web — Uses HTTP requests to tranfer files; requires a content server

username and password for Basic HTTP Authentication (file download
only).
25

UCPM API Developer’s Guide Understanding the UCPM API
<adapter type="scs" default="true" name="myadapter" resourceName="pool1">
 <config>
 <property name="port">4444</property>
 <property name="host">localhost</property>
 <property name="type">socket</property>
 </config>
</adapter>

Note: The attributes “port”, “host”, and “type” are associated with a content server
adapter. An image server adapter would require the “soapUrl”, “uploadUrl”, and
“downloadUrl” attributes. See “SIS adapter configuration elements” on page 26 for
additional information.

By default, tthe content server socket communication layer is used to stream files to
and from the content server. However, for high-volume checkin or file retrieval, you
can set the mapped or web optimized file transfer options.

A mapped transfer loads the files from a shared directory on the content server; this
results in much faster file transfers and does not tie up a socket that could be used
for other requests. To use mapped transfer, you must define these properties:

A web transfer uses HTTP requests to the content server’s web server to download
files. To use web transfer, you must define these properties:

A sample SCS configuration element using web transfer is shown below:

<adapter type="scs" default="true" name="myadapter" resourceName="pool1">
 <config>
 <property name="port">4444</property>
 <property name="host">localhost</property>
 <property name="type">web</property>
 <property name="contentServerAdminID">sysadmin</property>
 <property name="contentServerAdminPassword">idc</property>
 </config>
</adapter>

SIS adapter configuration elements

An SIS or “fixed” adapter communicates with Stellent Image Server (SIS). The config
element for an SIS adapter has five attributes as shown in the following table:

Property name Description

contentServerMappedVault The content server vault directory as seen from the application server.

appServerMappedVault The application server vault directory as seen from the content server.

Property name Description

contentServerAdminID The content server administrator ID to use to authenticate against the
content server.

contentServerAdminPassword The content server administrator password to use to authenticate
against the content server.
26

UCPM API Developer’s Guide Understanding the UCPM API
To create an SIS adapter, you must have Stellent Image Server version 7.5 or later
installed and the Web SDK running and accessible from the machine where CIS is
installed.

CIS communicates with the image server through the use of Web services.
Consequently, the protocol used is the Simple Object Access Protocol (SOAP), and
the application-level protocol definition is the Web Services Description Language
(WSDL).

A sample SIS configuration element is shown below:

<adapter type=”sis” name="fixedAdapter">
 <config>
 <property name="soapUrl">
 http://localhost/acordeweb/services/Acorde2.asmx
 </property>

 <property name="uploadUrl">
 http://localhost/AcordeWeb/UTInfrastructure/WebServiceFileReceiver.aspx
 </property>

 <property name="downloadUrl">
 http://localhost/AcordeData/AcordeSessionData
 </property>

 <property name="licenseView"></property>
 <property name="style"></property>

 </config>
</adapter>

Sample adapter configuration file
The following is a full example of an adapterconfig.xml file that can be used to
communicate with a content server and an image server, both running on localhost
using the default ports:

<?xml version="1.0" ?>
<config>

Property name Description

soapUrl The image server SOAP URL is the URL to the WSDL that CIS uses to
communicate with the image server.

uploadUrl The image server upload URL is the URL to the image server that
accepts requests to post data streams. Used by CIS to contribute file
streams from the user.

downloadUrl The image server download URL is the URL to the image server that
accepts requests for data streams. Used by CIS to return file streams to
the user.

licenseView The lcense view is the type of view into the system the user will have
can be “Web View” or “Full Seat”.

style Used to determine the style of licensing. Currently, this value can either
be left blank or be “CheckTrust”, which indicates whether a trusted
relationship should be used.
27

UCPM API Developer’s Guide Understanding the UCPM API
<adapter type="scs" default="true" name="myadapter" resourceName="pool1">
 <config>
 <property name="port">4444</property>
 <property name="host">localhost</property>
 <property name="type">socket</property>
 </config>
<beans template="classpath:/META-INF/resources/adapter/adapter-services-scs.jxml"/>
</adapter>

<adapter name="fixedAdapter">
 <config>
 <property name="soapUrl">
 http://localhost/acordeweb/services/Acorde2.asmx
 </property>
 <property name="uploadUrl">
 http://localhost/AcordeWeb/UTInfrastructure/WebServiceFileReceiver.aspx
 </property>
 <property name="downloadUrl">
 http://localhost/AcordeData/AcordeSessionData
 </property>
 <property name="licenseView"></property>
 <property name="style"></property>
 </config>
</adapter>
</config>
28

UCPM API Developer’s Guide Understanding the Active API
CHAPTER 3

Understanding the Active API

The UCPM API is modeled into a set of Services APIs, which are API calls that
communicate with the target server, and into ISCSObject objects, which are the
returned value objects from the server.

The Active API is a branch of the UCPM API that deals exclusively with Stellent
Content Server. The term ”active” refers to the nature of the content residing within
the content server which tends to be active in nature.

In this section:

! Acccessing the Active API

! Understanding the Active API objects

! Understanding the Active API servlets

! Using the Active APIs

Important: The current version of CIS uses the UCPM API which is not compatable
with CIS 7.2. See “Migrating from Version 7.2” on page 73 for more information.

Note: See the JavaDocs for information on the Class/Interface, Field, and Method
descriptions. The complete CIS JavaDoc is located in the /docs/cis-javadoc-all.zip file
(the /docs/cis-javadoc-ucpm.zip file contains only the UCPM API information).

Acccessing the Active API
The UCPM API is available on the CISApplication class via the getUCPMAPI ()
method. The getUCPMAPI () method returns a reference to the IUCPMAPI object,
allowing access to all UCPM API objects. Public interface IUCPMAPI is the locator
for the Active, Fixed, and Common API objects. The Active API is avalable via
getActiveAPI (), which returns a reference to the SCSActiveAPI object.

Note: The fully qualified method name is “CISApplication.getUCPMAPI
().getActiveAPI ()”.

The Active API comprises:

! Active Search API — the ISCSActiveSearchAPI is the command API
implementation of the search commands.

! Active File API — the ISCSActiveFileAPI deals with the retrieval of files, and
the dynamic conversions of files, from the content server.

! Active Document APIs — the Active Document APIs deals with active
content in the content server, including the checking in and out of content,
content information, and the deletion of content.

! Active Workflow API — the ISCSActiveWorkflowAPI deals with the workflow
commands such as approval and rejection, viewing a user’s workflow queue,
and interacting with the content server workflow engine.

! Various APIs for the implementation of the administrative commands,
component commands, etc.
29

UCPM API Developer’s Guide Understanding the Active API
The interface ICommandFacade is the entry point into the command interface. It
allows for interaction with the command layer, including command retrieval,
registration, and execution. Commands are referenced by name, where a name can
be any string. A name consisting of the dot character (".") will be treated in a
hierarchy, where the first segment is the top-level category, and the next segment is
the second-level category, etc. Commands can either be retrieved by their full
command name or by browsing all available commands.

Note: The fully qualified class name is “com.stellent.command.ICommandFacade”.

Example using ISCSDocumentCheckinCommandAPI:

ISCSDocumentCheckinCommandAPI commandAPI =
 (ISCSDocumentCheckinCommandAPI)m_commandFacade.getCommandAPI
 ("document.checkin");

Understanding the Active API objects
The Active API is responsible for formulating requests to the content server. Active
API calls translate into one or more IDC Service (content server service) calls.

Interface ISCSActiveObject
The ISCSActiveObject is the base interface for all objects in the Active API. It inherits
from ISCSObject and adds some specific functionality relative to the content server
objects. It allows access to the ISCSServerResponse object that created the object,
and it also allows access to a collection of properties that have been modified since
the object was initialized via the getModifiedProperties () method.

ISCSActiveObject objects have the concept of native property names. Specifically,
properties that are available on ISCSActiveObject are available by two different
names: the Java property name and the content server native name. For example,
to get the title of a ISCSActiveContent item, the following three methods are equal:

String title = content.getTitle ();
title = content.getProperty ("title").getValue ().getStringValue ();
title = content.getProperty ("dDocTitle").getValue ().getStringValue ();

The content server supports a metadata model that can be extended.
ISCSActiveObject objects can have more properties than those exposed via the
getProperty () methods. The ISCSActiveObject implementations expose the most
common properties, but other properties, such as the extended metadata, are only
available via the getProperty () method. Also, the getProperties () method will list all
the properties on the object, including properties without a corresponding getter or
setter method.

for (Iterator it = content.getProperties ().iterator (); it.hasNext ();) {
 ISCSActiveProperty property = (ISCSActiveProperty)it.next ();
 ISCSActivePropertyDescriptor descriptor = property.getActiveDescriptor ();
 if (descriptor.isBeanProperty ()) {
 System.out.println ("Property is available via get or set: " +
 property.getName ());
30

UCPM API Developer’s Guide Understanding the Active API
 } else {
 System.out.println ("Property is a hidden or extended property: " +
 property.getName ());
 }
 System.out.println ("Native property name: " + descriptor.getNativeName ());
}

The ISCSActiveObject property objects implement the ISCSActiveProperty interface,
which adds the getActivePropertyDescriptor () method. The
ISCSActivePropertyDescriptor adds the properties “beanProperty” and
“nativeName” to the available properties on an item.

! The beanProperty property determines if the current property object has an
available getter or setter method; if the property is false, this property object is
available only via the getProperty () method.

! The nativeName property returns the content server property name for the
given property.

Date objects

Date fields in the Active API are handled as Java Date objects in Coordinated
Universal Time (UTC time). All dates passed into the various properties of
ISCSActiveObject must be in UTC time. All date objects returned from the Active API
are in UTC time and need to be converted into the appropriate time zone for the
particular application.

Date releaseDate = content.getReleaseDate ();

//convert from UTC time to Pacific Time Zone
Calendar calendar = Calendar.getInstance ();
calendar.setTime (releaseDate);
calendar.setTimeZone (TimeZone.getTimeZone ("America/Los_Angeles"));
//use calendar to display date...

Interface ISCSServerResponse
The result of any call to the Active API is usually an ISCSServerResponse object (or
an InputStream for some specific document retrieval methods). The
ISCSServerReponse is the base interface for all the response objects. It
encapsulates the response from the content server for the last request. Most
methods have specific implementations of this interface, which provide properties
that are specific to those responses.

Understanding the Active API servlets
The Active API requires that a number of servlets be available to the system while
operating in a J2EE/Web environment and running in server mode. The following
table lists servlet names and the appropriate configuration information needed in
the web.xml file for a given web application.

SCSInitializeServlet, SCSFileDownloadServlet, and SCSDynamicConverterServlet
servlets. SCSDynamicConverterServlet
31

UCPM API Developer’s Guide Understanding the Active API
Servlet parameters
This section provides a description of the parameters for the SCSInitializeServlet,
SCSFileDownloadServlet, SCSDynamicConverterServlet, and
SCSDynamicURLServlet servlets.

This section does not specify any of the available security parameters, which are
detailed in “Servlet security” on page 35. All calls made to the content server use
the identity as specified in the servlet security section.

SCSInitializeServlet

The SCSInitializeServlet is a convient way to initialize a CISApplication instance from
within a web application. Any of the properties described can be used by the
SCSInitializeServlet. The SCSInitializeServlet can be configured externally via a
properties file. The “cis.initialization.file” property can be set with a path (either a
web-relative path or a classpath reference), to a property file containing the
initialization properties. This allows you to easily externalize the initialization to a
properties file.

By default, if SCSInitializeServlet finds no properties in the web.xml file, it will
attempt to load a properties file from the WAR and then from the classpath using
the default value /cis-initialization.properties. Thus, if you place a file called “cis-
initialization.properties” in your classpath (that is, in the same directory as the
adapterconfig.xml file), that file will be read during startup.

This properties file can hold all the standard initialization properties as defined in
the CISApplication class. This allows us to move the configuration of the how CIS
initializes outside the scope of the EAR/WAR file.

Client property definitions

Fully qualified name Mapping Description

SCSFileDownloadServlet
com.stellent.web.servlets.SCSFile
DownloadServlet

/getfile Allows clients to retrieve files from
the content server.

SCSCommandClientServlet
com.stellent.web.servlets.SCSCo
mmandClientServlet

/scscommandclient Publishes the CIS server configuration
information for CIS clients.

SCSFileTransferServlet
com.stellent.web.servlets.SCSFile
TransferServlet

/scsfiletransfer Allows CIS APIs to transfer files to a
CIS client.

SCSInitialize
com.stellent.web.servlets.SCSInit
ialize

N/A Initializes the CIS Application
instance. Should be set as a
“LoadOnStartup” servlet.

SCSDynamicConverterServlet
com.stellent.web.servlets.SCSDy
namicConverterServlet

/getdynamicconversion/* Executes a dynamic conversion and
streams the result to the client.

SCSDynamicURLServlet
com.stellent.web.servlets.SCSDy
namicURLServlet

/scsdynamic/* Retrieves dynamic files from the
content server; used when rewriting
the dynamically converted document
URLs.
32

UCPM API Developer’s Guide Understanding the Active API
Note: Refer to “Initialization properties” in the CIS Installation guide (cis-
installation-guide.pdf) for client configuration examples.

Server property definitions

The server properties are defined below. The defaults can be overridden by creating
a file named cis-initialization.properties and saving the file to the server-ear directoy
of the unbundled stellent-cis-7.6.1.zip file (this is the directory containing the
adapterconfig.xml file).

Propery Description

cis.config.type Must be set to “client” to initialize in client mode.
Default is server.

cis.config.client.type Can be either JNDI, RMI, or not specified to allow
for the default behavior.

jndi.* All properties beginning with jndi. will be treated as
JNDI properties; the 'jndi.' prefix will be removed
and the remaining property name/value will be
passed to the InitialContext.

cis.config.client.jndi.lookup-strategy The class name of a IJNDILookupStrategy; this
class will be used to intercept all client JNDI
lookups; this gives the caller a chance to modify the
JNDI name for each query.

cis.config.client.jndi.lookup-strategy.args A comma-separated list of arguments that will be
passed, as Strings, to the constructor of the lookup
strategy. This will allow for customization of the
lookup strategy via the configuration file. Useful to
pass information about the JNDI namespace as in
the case of Websphere remote JNDI trees.

cis.config.client.rmi The Remote Metod Invokation (RMI) URL to the host
CIS instance; in the form rmi://hostname:port.

Property Description

cis.config.type Default is server (server mode).
! Set to “server” to initialize in server-mode
! Set to “client” to initialize in client mode.

cis.config.server.adapterconfigl The URL pointing to the adapterconfig.xml file. In
addition to standard URLs, this can also be in classpath
form (i.e. classpath:/)

cis.config.server.type=sap The type of server to initialize as; if not specified, the
server attempts to evaluate the server type.
Valid values are weblogic, websphere, tomcat,
standalone, sap, sunone or custom.

cis.config.server.type.options A comma separated list of the options for the custom
server type. The options are either on or off,
dependening on their presence in this property.
Options are:
! ejb (for enabling ejb clients),
! rmi (for enabling rmi clients),
! jms (for enabling use of JMS servers)
! jca (for enabling use of the JCA adapter),

cis.config.server.type.options.ejb=true Default is true (EJBs enabled).
33

UCPM API Developer’s Guide Understanding the Active API
Note: Refer to “Initialization properties” in the CIS Installation guide (cis-
installation-guide.pdf) for server configuration examples.

SCSFileDownloadServlet

SCSDynamicConverterServlet

SCSDynamicURLServlet

cis.config.server.type.options.rmi=true Default is true (MI enabled).

cis.config.server.type.options.jms=true Default is true (JMS enabled).

cis.config.server.type.options.jca=false Defaut is false (JCA is disabled).

Property Required Description

adapterName true The adapter name to query for the document.

dDocName n/a The content ID of the document to retrieve.

rendition false The content rendition; valid only when specifying the
dDocName.

revisionSelection false The revisionSelection to use when selecting content;
valid only when specifying the dDocName.

forceStream false If true, the contents are streamed from the content
server via the GET_FILE call regardless of optimized file
transfer settings for the adapter; defaults to false.

Property Required Description

adapterName true The adapter name to query for the document.

contentID Either contentID
or documentID is
required.

The content ID (dDocName) of the document to retrieve.

documentID n/a The documentID (dID) of the document to retrieve.

rendition false The rendition of the document to retrieve; valid only if
contentID is specified.

revisionSelectionMethod false The revisionSelectionMethod to use to select the
document; valid only if contentID is specified.

viewFormat false The viewFormat of the conversion (i.e. Native or
WebViewable).

useAlternate false If true, use the alternate file for conversion; default is
false.

Property Required Description

adapterName true The adapter name to query for the document; not passed
in as a parameter, but, rather, specified as the last
segment on the URL: /scscis/scsdynamic/
<adaptername>?...

fileUrl true The relative path to the content server file to retrieve.

Property Description
34

UCPM API Developer’s Guide Understanding the Active API
Servlet security
All servlets, except for SISFileDownloadServlet and SCSInitializeServlet, make UCPM
API calls and therefore must have a user context. By default, they will use the
HttpServletRequest.getUserPrincipal() method to determine the user ID and pass
that ID via the ISCSContext object to the UCPM API call. This behavior can be
overridden by specifying a couple of initialization parameters to the servlet:

! principalLookupAllowed — if set to TRUE, the servlet will look for a user ID in
the configured scope. Default scope is “session”.

! principalLookupScope — the scope of the lookup. Valid if
principalLookupAllowed is TRUE. The defined scope will be used to call the
getAttribute () method to discover the name of the current user; can be either
“request”, “session”, or “application”. Default is “session”.

! principalLookupName — the name of the scoped parameter that holds the
user ID. Valid if principalLookupAllowed is TRUE. Default is “principal”.

! getUserPrincipalEnabled — if set to FALSE, no call will be made tothe
HttpServletRequest.getUserPrincipal () method to determine the user ID.
Default is TRUE.

! principal — the default user ID if no user ID can be determined. Default is
‘guest’.

To determine the current user ID, the servlets will first check the status of the
principalLookupAllowed flag. If TRUE, it looks up the name of the user by
determining the scope as set by the parameter principalLookupScope. With the
current scope, the getAttribute () method is called, using principalLookupName as
the parameter. If it is unable to locate a principal, it then checks the status of the
getUserPrincipalEnabled flag. If that flag is TRUE, it calls the
HttpServletRequest.getUserPrincipal () method. If that returns null, it uses the
default principal to execute the request.

Without any changes to the servlet, the default behavior is to check the
HttpServletRequest.getUserPrincipal () method and then use the default, if
necessary. The other checks on the request, session, and application are done only
if specified in the init-param of the servlet definition in the web.xml file.

Servlets and API interaction
The ISCSActiveFileAPI.getDynamicConversion() method performs a dynamic
conversion of the given document (assuming the Dynamic Converter component is
installed on the content server). The getDynamicConversion() call will also rewrite
the returned URLs, so that they point back to the CIS servlets (as opposed to
pointing directly to the content server) and display properly in the Web/Portal
environment when they are rendered.

The rewritten URLs point back to SCSDynamicURLServlet, which then retrieves the
item from the content server, via the Active API, and streams it back to the client.
The servlet determines the user ID for the context by the method described in
“Servlet security” on page 35.

Since the servlet determines the user ID, the user who executed the
getDynamicConversion() call might not have the same user ID as the user clicking a
link on the rendered HTML. This would be the case if the
HttpServletRequest.getUserPrincipal() user ID does not match the ISCSContext user
ID
35

UCPM API Developer’s Guide Understanding the Active API
In that event, the SCSDynamicURLServlet can be directed to look for a user
parameter on the session by customizing it via the methods described under
“Servlet security” on page 35. Alternatively, SCSDynamicURLServlet can call the
getDynamicConversion() and pass in an ISCSConvertedUrlInfo object that allows a
user to optionally add parameters to the URL, which can then be used by your
application to identify the context.

For example, if your application stored the current Stellent User ID in a session
attribute named “stellentPrincipal”, you would modify the web.xml for the
SCSDynamicURLServlet (and other servlets, as necessary) as follows:

<servlet>
 <servlet-name>scsdynamic</servlet-name>
 <servlet-class>com.stellent.web.servlets.SCSDynamicURLServlet</servlet-class>
 <init-param>
 <param-name>sessionPrincipalAllowed</param-name>
 <param-value>true</param-value>
 </init-param>
 <init-param>
 <param-name>sessionPrincipalName</param-name>
 <param-value>stellentPrincipal</param-value>
 </init-param>
</servlet>

Using the Active APIs
The Active Search, Active File, Active Document, and Active Workflow APIs are
discussed and sample code provided. These APIs perform task such as searching,
checking in and out of content, and workflow approval and rejection.

It is assumed that you have initialized a CISApplication instance (referred to as
m_cisApplication) and created a context object (referred to as m_context).

Note: Additional samples can be found in the SDK/Samples/CodeSamples/
directory.

Active Search API
The ISCSActiveSearchAPI is the command API implementation of the search
commands. You can use ISCSActiveSearchAPI to search the content server using the
following code:

//get a handle to the Active Search API
ISCSActiveSearchAPI searchAPI =
 m_cisApplication.getUCPMAPI ().getActiveAPI ().getSearchAPI ();
ISCSActiveSearchResponse searchResponse =
 searchAPI.search (m_context, "dDocTitle <substring> 'HR'", 25);

//iterate all results
for (Iterator it = searchResponse.getResults ().iterator (); it.hasNext ();) {
 ISCSActiveSearchResult searchResult = (ISCSActiveSearchResult)it.next ();

 //print out the title and author
 System.out.println ("Found result: " + searchResult.getTitle () + " by " +
 searchResult.getAuthor ());
}

36

UCPM API Developer’s Guide Understanding the Active API
Active File API
The ISCSActiveFileAPI deals with the retrieval of files, and the dynamic conversions
of files, from the content server. A file can be retrieved simply by passing in the ID
for the content. Alternatively, different versions of the file can be retrieved by using
the optional ISCSFileInfo object to obtain references to the Web and Alternate
versions of the file.

//get the Active File API
ISCSActiveFileAPI fileAPI =
 m_cisApplication.getUCPMAPI ().getActiveAPI ().getFileAPI ();
SCSContentFileStream stream =
 fileAPI.getFile (m_context, content.getActiveDocumentID ());

//save the file to disk via a utility method
StreamUtil.copyStream (stream, new FileOutputStream (stream.getFileName ());

//close the stream
stream.close ();

You can also use the _createFileInfo() method to get an ISCSFileInfo object. This
object has several properties, which allow one to further select which rendition of a
file to retrieve. The following sample uses the fileinfo object to get the “Web
Viewable” rendition of a file. A similar process can be used to get the “Alternate”
rendition.

//get the web viewable version of the file
ISCSFileInfo fileInfo = m_cisApplication._createFileInfo ();
fileInfo.setRendition ("Web");

//get the file
SCSContentFileStream stream =
 fileAPI.getFile (m_context, content.getActiveDocumentID (), fileInfo);
//do something with the stream...

The Active File API can be used to generate HTML renditions of the content via the
Dynamic Converter component of the content server (you must have the Dynamic
Converter component installed).

In a similar fashion to the getFile () calls, you can either call getDynamicConversion
() with an ID to retrieve the HTML conversion, or you can use the ISCSFileInfo and
ISCSConvertedFileInfo objects to pass information into the API to process
conversion rules and apply explicit templates.

SCSContentFileStream stream =
 fileAPI.getDynamicConversion (m_context, content.getActiveDocumentID ());
//process the stream...

The following sample combines the above features in one method that dynamically
converts the alternate rendition of a given content object by using a custom
conversion template.

//create the converted file bean and set our properties
ISCSConvertedFileInfo convertedInfo = fileAPI._createConversionInfo ();
37

UCPM API Developer’s Guide Understanding the Active API
convertedInfo.setConversionLayout ("custom_layout");
convertedInfo.setRendition ("Alternate");

//execute the dynamic conversion
SCSContentStream contentStream =
 fileAPI.getDynamicConversion
 (m_context, content.getActiveDocumentID (), convertedInfo);
//do something with the stream...

Active Document APIs
The Active Document APIs deals with active content in the content server, including
the checking in and out of content, content information, and the deletion of content.
The ISCSActiveDocumentCheckinAPI and the ISCSActiveDocumentCheckoutAPI are
discucussed in detail below.

ISCSActiveDocumentCheckinAPI
This API deals with the check-in of all content to the content server. For a simple
check-in of a file from disk, the following code will work:

//get the checkin api
ISCSActiveDocumentCheckinAPI checkinAPI =
 m_cisApplication.getUCPMAPI ().getActiveAPI ().getDocumentCheckinAPI ();

//create an empty content object with the specified content ID
ISCSActiveContent content = checkinAPI._createContent ("my_test_file");
content.setAuthor (m_context.getUser ());
content.setTitle ("Custom Title");
content.setSecurityGroup ("Public");
content.setType ("ADACCT");

//get the file stream
File myFile = new File ("c:/test/testcheckin.txt");
SCSContentFileStream stream = new SCSContentFileStream (myFile);

//execute the checkin
checkinAPI.checkinFileStream (m_context, content, stream);

In many deployments of the content server, there are required extended properties
that need to be set for a new piece of content. These properties can be set on the
content object via the setProperty() call available to all ISCSObjects. For example,
some custom properties can be set as follows:

//set an extended property
content.setProperty ("xCustomProperty", "Custom Value");

You can use the setProperty() method to set all the properties as opposed to calling
the setter methods. You can use either the JavaBean name (for example, “title”) or
the native content server property name that the JavaBean property corresponds to
(that is, ‘dDocTitle’). In the next sample, we will set the title property in three ways,
all equivalent:

//set via a standard property setter
content.setTitle ("My Title");
38

UCPM API Developer’s Guide Understanding the Active API
//set a standard property using the JavaBean property name
content.setProperty ("title", "My Title");

//set a property using the native content server property name
content.setProperty ("dDocTitle", "My Title");

ISCSActiveDocumentCheckoutAPI
This API deals with checking out content from the content server. Content items are
identified by their ID.

//get the checkout api
ISCSActiveDocumentCheckoutAPI checkoutAPI =
 m_cisApplication.getUCPMAPI ().getActiveAPI ().getDocumentCheckoutAPI ();

//checkout the file
checkoutAPI.checkout (m_context, content.getActiveDocumentID ());

Active Workflow API
The ISCSActiveWorkflowAPI deals with the workflow commands such as approval
and rejection, viewing a user’s workflow queue, and interacting with the content
server workflow engine. The following sample code shows an example of querying
the workflow engine for the workflows currently active in the system:

//get the workflow API
ISCSActiveWorkflowAPI workflowAPI =
 m_cisApplication.getUCPMAPI ().getWorkflowAPI ();
ISCSWorkflowActiveResponse workflowResponse =
 workflowAPI.getActiveWorkflows (m_context);

//iterate through the workflows
for (Iterator it = workflowResponse.getActiveWorkflows (); it.hasNext ();) {
 ISCSWorkflow workflow = (ISCSWorkflow)it.next ();
 String name = workflow.getName ();
 String status = workflow.getWorkflowStatus ();
 System.out.println
 ("Active workflow: " + workflow.getName () + "; status = " + status);
}

The most common interaction with workflows is to reject them or approve them and
advance them to the next step in the workflow. The following code illustrates how to
get a user’s personal workflow queue and approve all workflows pending:

//get the workflow API
ISCSActiveWorkflowAPI workflowAPI =
 m_cisApplication.getUCPMAPI ().getWorkflowAPI ();

//get the workflow queue
ISCSWorkflowQueueResponse queueResponse =
 workflowAPI.getWorkflowQueueForUser (m_context);
for (Iterator it = queueResponse.getWorkflowInQueue().iterator(); it.hasNext();) {
 ISCSWorkflowQueueItem queueItem =
 (ISCSWorkflowQueueItem)it.next();
39

UCPM API Developer’s Guide Understanding the Active API
 //approve the workflow
 workflowAPI.approveWorkflow(m_context, queueItem.getContentID ());
}

40

UCPM API Developer’s Guide Understanding the Fixed API
CHAPTER 4

Understanding the Fixed API

The UCPM API is modeled into a set of Services APIs, which are API calls that
communicate with the target server, and into ISCSObject objects, which are the
returned value objects from the server.

The Fixed API is a branch of the UCPM API that deals exclusively with Stellent Image
Server. The term ”fixed” refers to the nature of the content residing within the image
server which tends to be high volume but static in nature.

CIS communicates with Stellent Image Server through the use of Web services.
Consequently, the protocol used is the Simple Object Access Protocol (SOAP), and
the application-level protocol definition is Web Services Description Language
(WSDL). See “CIS architecture” in the CIS Installation Guide for more information
(cis-install-guide.pdf).

In this section:

! Accessing the Fixed API

! Understanding the Fixed API objects

! Using the Fixed APIs

Important: The current version of CIS uses the UCPM API which is not compatable
with CIS 7.2. See “Migrating from Version 7.2” on page 73 for more information.

Note: See the JavaDocs for information on the Class/Interface, Field, and Method
descriptions. The complete CIS JavaDoc is located in the /docs/cis-javadoc-all.zip file
(the /docs/cis-javadoc-ucpm.zip file contains only the UCPM API information).

Accessing the Fixed API
The UCPM API is available on the CISApplication class via the getUCPMAPI ()
method. The getUCPMAPI () method returns a reference to the IUCPMAPI object,
allowing access to all UCPM API objects. Public interface IUCPMAPI is the locator
for the Active, Fixed, and Common API objects. The Fixed API is avalable via
getFixedAPI (), which returns a reference to the SCSFixedAPI object.

Note: The fully qualified method name is “CISApplication.getUCPMAPI
().getFixedAPI ()”.

The Fixed API comprises:

! ISCSFixedAdministrativeAPI — allows you to query/create adapters
programmatically.

! ISCSFixedUserAPI — used to log in to and out of an image server.

! ISCSFixedSearchAPI — implementation of the search commands used to
perform searches against the image server.

! ISCSFixedDocumentAPI — used to contribute documents to, and retrieve
documents from, the image server.

! ISCSFixedProcessAPI — used to query/effect information about current state
of processes within the image server.
41

UCPM API Developer’s Guide Understanding the Fixed API
The interface ICommandFacade is the entry point into the command interface. It
allows for interaction with the command layer, including command retrieval,
registration, and execution. Commands are referenced by name, where a name can
be any string. A name consisting of the dot character (".") will be treated in a
hierarchy, where the first segment is the top-level category, and the next segment is
the second-level category, etc. Commands can either be retrieved by their full
command name or by browsing all available commands.

Example using ISCSFixedSearchAPI:

ISCSFixedSearchAPI commandAPI =
 (ISCSFixedSearchAPI)m_commandFacade.getCommandAPI
 ("search", com.stellent.command.ICommandFacade.TYPE_UCM_FIXED_API);

Understanding the Fixed API objects
Once the CISApplication object has been initialized, you can retrieve the Fixed API
objects:

CISApplication cisApplication = CISApplication.initializeServer (myHost, myPort);
cisApplication.getUCPMAPI ().getFixedAPI ()

Each object returned from a Fixed API call is a descendent of ISCSFixedObject. This
object provides the ability to return the source SOAP object, allows the user to
determine if an error occurred while building the object, and allows the user to
retrieve the objects version.

Using the Fixed APIs
The Fixed User, Fixed Search, Fixed Document, and Fixed Process APIs are
discussed and sample code provided. These APIs perform the task of logging in,
searching, document export and contribution, and handling business processes.

Note: Additional samples can be found in the SDK/Samples/CodeSamples/
directory.

Fixed User API
The ISCSFixedUserAPI is used to log in to and out of an image server. If there is a
trusted relationship between CIS and the image server, a login is not necessary. The
trusted IP address allows CIS to log in behind the scenes when it uses the Fixed API,
and only a valid user name on the context is necessary.

However, if this relationship does not exist, or is not desired, explicit logins are
possible. Each login method will return a string value called ‘AIID’, which is an XML
snippet that is used as a login token for the remainder of the application. Once you
have successfully logged in, set this value on the context via the setAcordeID ()
method so that subsequent calls on the Fixed API will be authenticated.

In each of the following examples, the CISApplication object is initialized and
ISCSFixedUserAPI is defined as userAPI:
42

UCPM API Developer’s Guide Understanding the Fixed API
ISCSFixedUserAPI userAPI =
 cisApplication.getUCPMAPI ().getFixedAPI ().getUserAPI ();

Basic login
This login requires only a username, password, and an adapter name that specifies
the image server you wish to log into:

String aiid = userAPI.login ("sisadapter", "sysadmin","idc");

//Create a new context and populate it with the appropriate information.
ISISContext ctx = cisApplication.getUCPMAPI ().getFixedAPI ()._createSISContext ();
ctx.setUser ("sysadmin");
ctx.setAcordeID (aiid);
ctx.setAdapterName ("sisadapter");

//This context is now authenticated and can be used in subsequent calls
//to the image server.

Log in to Stellent Process
If Stellent Process (electronic process monitoring tool) is installed on the image
server, you can log in to both at the same time by specifying the database name:

String aiid =
 userAPI.login ("sisadapter", "sysadmin","idc", "ibpmprocessdemo", "FullSeat", "");

//Create a new context and populate it with the appropriate information.
ISISContext ctx = cisApplication.getUCPMAPI ().getFixedAPI ()._createSISContext ();
ctx.setUser ("sysadmin");
ctx.setAcordeID (aiid);
ctx.setAdapterName ("sisadapter");

//This context is now authenticated against the image server and Stellent Process.

Logging out
You can invalidate a user token (i.e., ‘AIID’) by logging out explicitly. This may be
useful to free up a license:

//Context here assumed to be authenticated
userAPI.logout (ctx);

//User token now invalidated and license released.

Fixed Search API
The ISCSFixedSearchAPI is the implementation of the search commands used to
perform searches against the image server. Searching with the Fixed API can be
accomplished in three different ways:

! Executing a saved search that has been defined on the server.
43

UCPM API Developer’s Guide Understanding the Fixed API
! Executing an adhoc search that lets the user specify the search parameters
programmatically.

! Performing a lookup of a specific document by specifying two parameters that
uniquely identify an image server document.

Each method of searching will return a ISCSFixedSearchResponse object. This object
contains search status information, a list of column descriptors that describe the
various user defined metadata fields present in the current set of search results,
and a list of ISCSFixedContent objects that were found by the search.

Each content object provides an identifier, which uniquely identifies the piece of
content through several system-level data fields, and a list of ISCSUserField objects,
which represent the user-defined metadata for the content object.

Each type of search (excluding the lookup) allows you to specify the maximum
number of results to return from the search. You may continue the search if there
were more available by calling the continueSearch () method and passing in the
searchCookie () value of the fixed search response.

Note: Stellent Image Server currently only supports moving forward through a
result set.

In each of the following examples, the CISApplication object has been initialized and
the ISCSFixedSearchAPI has been defined as searchAPI:

ISCSFixedSearchAPI searchAPI =
 cisApplication.getUCPMAPI ().getFixedAPI ().getSearchAPI ();

This example assumes that a context object has been created that refers to a SIS
adapter:

ISISContext ctx =
 cisApplication.getUCPMAPI ().getFixedAPI ()._createSISContext ();
ctx.setUser ("myUserID");
ctx.setAdapterName ("sisadapter");

Saved searches
The tasks of getting saved search names, getting saved search prompts, and
continuing a search are discussed and a complete saved search example is
provided.

Getting saved search names

If you do not know what saved searches are available, you can query the server for
a list of these names:

// Returns a list of strings.
List names = searchAPI.getSavedSearchNames (ctx);

//Iterate through and print the names to the console.
Iterator iter = names.iterator ();
String searchName;
while (iter.hasNext ()) {
 searchName = (String)iter.next ();
 System.out.println (searchName);
}

44

UCPM API Developer’s Guide Understanding the Fixed API
Getting saved search prompts

Once you know the search name that you wish to execute, you can query the server
for the list of user prompts available for that saved search:

//Retrieve the list of prompts for the search 'HR Search by Employee Last Name'
List prompts =
 searchAPI.getSavedSearchPrompts (ctx, "HR Search by Employee Last Name");

Iterator iter = prompts.iterator ();
ISCSFixedSearchPrompt prompt;
while (iter.hasNext ()) {
 prompt = (ISCSFixedSearchPrompt)iter.next ();
 //Print out Display text and operator value
 System.out.println (prompt.getDisplayText ());

 //This returns an operator string, the getOperator ()
 //returns an integer representation.
 System.out.println (prompt.getOperatorStr ());

 //If the prompt is the Employee Last Name, set the user input to 'Farley',
 //this will only return results that have the last name of 'Farley'.
 if (prompt.getDisplayText ().equals ("Employee Last Name")) {
 prompt.setUserInput ("Farley");
 }
}

Continuing a search

If you have specified a search that does not return all the results in one batch, you
may continue the search to retrieve the remaining results:

//Get the initial five results.
ISCSFixedSearchResponse response =
 searchAPI.search (ctx, ("HR Search by Employee Last Name", 5);

//Use the search connection ID present in the first response to continue the search.
String connectionID = response.getSearchCookie ();

while (response.getStatus () != ISCSFixedSearchResponse.COMPLETE) {
 response = searchAPI.continueSearch (ctx, connectionID);
 //Process next 5 results
}

A complete saved search example

Once you know the saved search name and the prompt values you wish to use, you
can execute a complete saved search (this example assumes that the prompts List
has been setup as above):

//Perform search with prompts set to last name of "Farley",
//returning a maximum of 20 results
ISCSFixedSearchResponse response =
 searchAPI.search (ctx, "HR Search by Employee Last Name", prompts, 20);

//Iterate through and print results.
List results = response.getResults ();
Iterator resultIter = results.iterator ();
Iterator fieldIter;
45

UCPM API Developer’s Guide Understanding the Fixed API
ISCSFixedContent content;
List userFields;
ISCSFixedUserField field;
while (resultIter.hasNext ()) {
 content = (ISCSFixedContent) resultIter.next ();
 userFields = content.getUserFields ();
 fieldIter = userFields.iterator ();

 while (fieldIter.hasNext ()) {
 field = (ISCSFixedUserField)fieldIter.next ();
 System.out.println (field.getName ());
 System.out.println (field.getValue ());
 }
}

Adhoc searches
The tasks of getting searchable applications and getting a specific application query
is discussed and a complete adhoc query example is provided.

Getting searchable applications

To create a search programmatically, you first need the application name you wish
to build the search for. The application is a document definition residing in the
image server that defines the metadata present in each piece of content. You can
query the server for searchable application types using this code:

//Get the response object.
ISCSFixedApplicationResponse resp = searchAPI.getSearchableApplications (ctx);

//Filter indicates what filter was used to get the application list.
System.out.println ("Filter: " + resp.getFilter ());

//Iterate through the list of returned applications and echo application name.
Iterator iter = resp.getApplications ().iterator ();
ISCSFixedApplication application;

while (iter.hasNext ()) {
 application = (ISCSFixedApplication)application;
 System.out.println (application.getName ());
}

Getting a specific application query

To create a programmatic query, you must first get the list of prompts and
operators available for the application type you wish to query. This query has a list
of ISCSFixedAdhocPrompts and a list of available logical operators (AND, OR, etc).
Each adhoc prompt also has a list of comparison operators that can be used
(EQUAL, LIKE, etc).

//You can retrieve the query by its string name
//or by passing in the associated ISCSFixedApplication object.
ISCSFixedAdhocQuery query =
 searchAPI.getApplicationQuery (ctx, "HR Application");

//Print out available logical operators.
Iterator logopIter = query.getLogicalOperators ().iterator ();
ISCSFixedLogicalOperator logop;
46

UCPM API Developer’s Guide Understanding the Fixed API
while (logopIter.hasNext ()) {
logop = (ISCSFixedApplication)logopIter.next ();
System.out.println (logop.getName ());
}

//Print out available prompts for this query.
Iterator promptIter = query.getPrompts ().iterator ();
ISCSFixedAdhocPrompt prompt;
while (iter.hasNext ()) {
 prompt = (ISCSFixedAdhocPrompt)iter.hasNext ();
 System.out.println (prompt.getName ());

//You can specify user input to this prompt with setUserInput ()
//and get a list of available comparison operators with getComparisonOperators ()
}

A complete adhoc query example

Once you know the application name and the prompt values you wish to use, you
can execute a complete adhoc query:

ISCSFixedAdhocQuery query = searchAPI.getApplicationQuery (ctx, "HR Application");

//Get the Employee Name prompt and set the Employee Name to John.
ISCSFixedAdhocPrompt prompt = query.getPrompt ("EmployeeName");
prompt.setUserInput ("John");
prompt.setComparisonOperator (ISCSFixedAdhocPrompt.OPERATOR_BEGINSWITH);

//Get the DocumentType prompt and set to Dental Form,
//and set the comparison operator.
prompt = query.getPrompt ("DocumentType");
prompt.setUserInput ("Dental Form");
prompt.setComparisonOperator (ISCSFixedAdhocPrompt.OPERATOR_EQUAL);

//Set the query to AND the prompts together.
query.setLogicalOperator (ISCSFixedAdhocQuery.OPERATOR_AND);

//Perform the search of HR documents that have an Employee name of John
//and a document type of Dental Form. (The zero indicates that all results
//should be returned.)
ISCSFixedSearchResponse response = searchAPI.adhocSearch (ctx, query, 0);

//Process results.

Looking up a specific document
If you know the application name and row identifier of a specific document, you can
perform a search designed to return a specific document. Also, if you have an
identifier object retrieved from an ISCSFixedContent object, you also may look up a
specific document with a single call.

//Fixed ID object assumed to be retrieved prior to this snippet.
//This call will either return the unique document specified by the identifier
//or will throw an exception if the document is not found.
ISCSFixedContent contentItem =
 searchAPI.lookup (ctx, identifier);

//String applicationName and String rowIdentifier assumed to be retrieved
//prior to this snippet.
47

UCPM API Developer’s Guide Understanding the Fixed API
ISCSFixedContent contentItem =
 searchAPI.lookup (ctx, applicationName, rowIdentifier);

Fixed Document API
The ISCSFixedDocumentAPI is used to contribute documents to, and retrieve
documents from, the image server. The tasks of document export and document
contribution are discussed and examples provided.

In the following examples, the CISApplication object has been initialized and the
ISCSFixedDocumentAPI has been defined as documentAPI:

ISCSFixedDocumentAPI documentAPI =
 cisApplication.getUCPMAPI ().getFixedAPI ().getDocumentAPI ();

This example also assumes that a context object has been created that refers to a
SIS adapter:

ISISContext ctx =
 cisApplication.getUCPMAPI ().getFixedAPI ()._createSISContext ();
ctx.setUser ("myUserID");
ctx.setAdapterName ("sisadapter");

Document export
Each ISCSFixedContent object has a list of ISCSFixedContentPage objects
associated with it. These pages can be exported in the following formats: GIF, BMP,
TIF, JPG (default), PCX, OPTIKA, NATIVE, EMF, PDF, and SMARTMODE. There are
constants available off the interface ISCSFixedContentPage. Once you have
retrieved the list of content pages of the desired type, you may then make calls to
the server to retrieve the stream for each page.

Default set of content pages

This example illustrates getting the default set of content pages associated with a
piece of fixed content and saving the streams to disk:

//Identifier assumed to be prior to this snippet, it is retrieved
//via the getIdentifier () method on a valid piece of ISCSFixedContent.
List contentPages = documentAPI.getContentPages (ctx, identifier);

ISCSFixedContentPage contentPage;
Iterator iter = contentPages.iterator ();
FileOutputStream out;
InputStream in;
while (iter.hasNext ()) {
 contentPage = (ISCSFixedContentPage)iter.next ();
 //Relative location of content stream as seen by Image Server.
 System.out.println ("Location: " + contentPage.getLocation ());
 System.out.println ("PageNumber: " + contentPage.getPageNumber ());
 System.out.println ("SectionNumber: " + contentPage.getSectionNumber ());

 //Get the input stream associated with this content page.
 in = documentAPI.getContentStream (ctx, contentPage);
48

UCPM API Developer’s Guide Understanding the Fixed API
 //Create out
 out = new FileOutputStream (contentPage ().getPageNumber () + "_" +
 contentPage.getSectionNumber () + ".jpg");

 //Write the stream to disk
 byte[] bytes = new byte[64];
 int read;
 while ((read = in.read (bytes)) != -1) {
 out.write (bytes, 0, read);
 }

 in.close ();
 out.close ();
}

Native set of content pages

You can also get the native set of content pages. These represent the actual files
that were contributed to the image server.

//Many defaults are used here, check JavaDocs for the meaning of each.
//The important thing to note is the type, which has been specified as Native.
List pages = m_fixedDocument.getContentPages (ctx, identifer, ISCSFixedContentPage.
DEFAULT_DPI, ISCSFixedContentPage.TYPE_NATIVE,
 ISCSFixedContentPage.DEFAULT_NAMESPACE,
 ISCSFixedContentPage.DEFAULT_SCALE,
 ISCSFixedContentPage.DEFAULT_HIGHEST_RESOLUTION);

//Process pages as desired.

Document contribution
You may contribute new documents to the image server through the Fixed API. This
is accomplished by first uploading the desired file stream to the image server,
retrieving a ticket, and then associating this ticket with a set of metadata that
describes the document that is to be contributed.

Uploading a file to the image server

To upload a file to the image server, you need to create an SCSContentFileStream
object and call the upload method.

File fileToUpload = new File ("c:\\TestDocument.tif");

//Create a new SCSContentStream
SCSContentFileStream fileStream =
 new SCSContentFileStream (new FileInputStream (fileToUpload),
 fileToUpload.getName (),
 "application/octet-stream", fileToUpload.length ());

//Upload stream and retrieve ticket
String ticket = documentAPI.uploadStream (ctx, fileStream);
49

UCPM API Developer’s Guide Understanding the Fixed API
Get creatable applications

To attach an associated set of metadata to the file that was uploaded, you must first
decide which application type you wish to contribute the document as. You can
retrieve a list of creatable application types with the following code.

ISCSFixedApplicationResponse response = documentAPI.getCreatableApplications (ctx);

//Iterate through and print out application names.
ISCSFixedApplication application;
Iterator iter = response.getApplications ().iterator ();
while (iter.hasNext ()) {
 application = (ISCSFixedApplication)iter.next ();
 System.out.println (application.getName ());
}

Get ‘create document’ request

Once the application type has been determined, you can get the object that defines
the ‘create document’ request for that application. This request contains each
metadata field that is associated with the chosen application type.

Note: There is no enforcing of required metadata fields; be careful that the data is
valid before contributing.

//Application object here assumed to be retrieved prior to snippet.
ISCSFixedCreateDocumentRequest createRequest =
 documentAPI.getCreateDocumentRequest (ctx, application);

//Iterate through each associated field and print its name.
ISCSFixedUserField field;
Iterator iter = createRequest.getUserFields ().iterator ();
while (iter.hasNext ()) {
 field = (ISCSFixedUserField)iter.next ();
 System.out.println (field.getName ());
}

A complete ‘create document’ example

To finish the request, a reference ID must be set (this is a user-identified ID that is
used to track the request), the request URI must be specified (this is the ticket value
retrieved during the upload process), and finally, the metadata fields must be
populated with the desired data.

File fileToUpload = new File ("c:\\TestDocument.tif");

//Create a new SCSContentStream
SCSContentFileStream fileStream =
 new SCSContentFileStream (new FileInputStream (fileToUpload),
 fileToUpload.getName (),"application/octet-stream", fileToUpload.length ());

//Upload stream and retrieve ticket
String ticket = documentAPI.uploadStream (ctx, fileStream);

ISCSFixedApplicationResponse response = documentAPI.getCreatableApplications (ctx);

//Just retrieve the first application in the list for this example.
ISCSFixedApplication application = response.getApplications ().get (0);
50

UCPM API Developer’s Guide Understanding the Fixed API
ISCSFixedCreateDocumentRequest createRequest =
 documentAPI.getCreateDocumentRequest (ctx, application);

//Iterate through each associated field and set its value to the exampleData
//for this example (a real application would set these to meaningful values).
ISCSFixedUserField field;
Iterator iter = createRequest.getUserFields ().iterator ();
String exampleData = "exampleData";
while (iter.hasNext ()) {
 field = (ISCSFixedUserField)iter.next ();
 field.setValue (exampleData);
}

//Set the reference ID and URI
createRequest.setReferenceID ("refOne");
createRequest.setURI (ticket);

//Make the create request.
ISCSFixedCreateDocumentResponse createResponse =
 documentAPI.createDocument (ctx, createRequest);

//You can get the identifier of the newly created object like this
ISCSFixedID identifier = createResponse.getIdentifier ();

Fixed Process API
The ISCSFixedProcessAPI is used to query/effect information about current state of
processes within the image server. The image server has a large set of Business
Process functionality available through the Fixed API. This ranges from querying the
current state to creating and moving items through the defined processes.

In each of the following examples, the CISApplication object has been initialized and
the ISCSFixedProcessAPI has been defined as processAPI:

ISCSFixedProcessAPI processAPI =
 cisApplication.getUCPMAPI ().getFixedAPI ().getProcessAPI ();

This example also assumes that a context object has been created that refers to a
SIS adapter:

ISISContext ctx = cisApplication.getUCPMAPI ().getFixedAPI ()._createSISContext ();
ctx.setUser ("myUserID");
ctx.setAdapterName ("sisadapter");

Getting package templates

A package template is the structure used to define a package. You can query the
defined templates with the following code:

Iterator iter = packageTemplates.iterator ();
ISCSFixedPackageTemplate template;
while (iter.hasNext ()) {
 template = (ISCSFixedPackageTemplate)iter.next ();
 System.out.println (template.getTemplateID ());
 System.out.println (template.getTemplateName ());
 System.out.println (template.getDescription ());
51

UCPM API Developer’s Guide Understanding the Fixed API
 System.out.println (template.isCreatable ());
}

Getting process profiles

You can also retrieve the available process profiles:

List processProfiles = processAPI.getProcessProfiles (ctx);

Iterator iter = processProfiles.iterator ();
ISCSFixedProcessProfile profile;

while (iter.hasNext ()) {
 profile = (ISCSFixedProcessProfile)iter.next ();
 System.out.println (profile.getProfileID ());
 System.out.println (profile.getProfileName ());
 System.out.println (profile.getProfileType ());
 System.out.println (profile.hasPrompts ());
 System.out.println (profile.isLastUsed ());
}

Getting prompted profiles

You can also retrieve the available prompted profiles:

//Assumed here that the profile object (ISCSFixedProcessProfile) was
//retrieved prior to snippet
List promptedProfiles = processAPI.getProfilePrompts (ctx, profile);

Iterator iter = promptedProfiles.iterator ();
ISCSFixedPromptedProfile promptedProfile;

while (iter.hasNext ()) {
 promptedProfile = (ISCSFixedPromptedProfile)iter.next ();
 System.out.println (promptedProfile.getProfileID ());
 System.out.println (promptedProfile.getProfileName ());
 System.out.println (promptedProfile.hasPrompts ());

 if (promptedProfile.hasPrompts) {
 List prompts = promptedProfile.getPrompts ();
 Iterator promptIter = prompts.iterator ();
 ISCSFixedProfilePrompt prompt;
 SCSFixedProcessOperator processOperator;
 while (promptIter.hasNext ()) {
 prompt = (ISCSFixedProfilePrompt)promptIter.next ();
 System.out.println ("Display Text: "
 + prompt.getDisplayText ());
 System.out.println ("Field ID: "
 + prompt.getFieldID ());
 System..out.println ("Field Type:"
 + prompt.getFieldType ());
 System.out.println ("Pick List Name: "
 + prompt.getPickListName ());
 System.out.println ("User Input: "
 + prompt.getUserInput ());
 System.out.println ("Distinct List Name: "
 + prompt.getDistinctListName ());

 processOperator = p.getOperator ();

 System.out.println ("Description: "
52

UCPM API Developer’s Guide Understanding the Fixed API
 + processOperator.getDescription ());
 System.out.println ("Display Text: "
 + processOperator.getDisplayText ());
 System.out.println ("Type: "
 + processOperator.getType ());
 }
 }
}

Getting packages by profile

This is an example of getting a list of package objects by the profile they are
associated with:

//Assumed here that the profile object (ISCSFixedProcessProfile)
//was retrieved prior to snippet

//You can also get packages by prompted profile via the getPackagesByPrompt
//method or by explicit ID via the getPackageByID method.
List packages = processAPI.getPackagesByProfile (ctx, profile);

Iterator iter = packages.iterator ();
ISCSFixedPackage package;

while (iter.hasNext ()) {
 package = (ISCSFixedPackage)iter.next ();
 System.out.println ("Create Date: " + package.getCreateDate ());
 System.out.println ("Creator Name: " + package.getCreatorName ());
 System.out.println ("Due Date: " + package.getDueDate ());
 System.out.println ("In Queue Date: " + package.getInQueueDate ());
 System.out.println ("Locked By Name: " + package.getLockedByName ());
 System.out.println ("Package ID: " + package.getPackageID ());
 System.out.println ("Package Type: " + package.getPackageType ());
 System.out.println ("Priority: " + package.getPriority ());
 System.out.println ("Process Name: " + pkg.getProcessName ());
}

Creating a package

This is an example of creating a package:

//Method creates an empty package to populate. Specify the adapter you are
//going to create package in as a parameter.
ISCSFixedCreatePackage createPkg = processAPI._createPackage ("sisadapter");

//Set a request ID for reference later.
createPkg.setRequestID ("Req_01");

//Set the template name you wish this package to be associated with.
createPkg.setTemplate ("VoucherPackage");

//Create the package.
ISCSFixedCreatePackageResult result = processAPI.createPackage (ctx createPkg);

//Echo back the results of request.
System.out.println ("Decision Text: " + result.getAttachmentCount ());
System.out.println ("Package ID: " + result.getPackageID ());
System.out.println ("Request ID: " + result.getRequestID ());
System.out.println ("Is Created: " + result.isCreated ());
System.out.println ("Is Journal Entries Made: " + result.isJournalEntriesMade ());
System.out.println ("Is Placed In Flow: " + result.isPlacedInFlow ());
53

UCPM API Developer’s Guide Understanding the Fixed API
System.out.println ("Is Values Set: " + result.isValuesSet ());
System.out.println ("Is XML Metadata: " + result.isXMLMetaData ());

Setting package fields

This is an example of setting the metadata associated with a package:

//Package assumed to be retrieved prior to this snippet
List fields = processAPI.getPackageFields (ctx, package.getPackageID ());
Iterator iter = fields.iterator ();
ISCSFixedPackageField field;

while (iter.hasNext ()) {
 field = (ISCSFixedPackageField)iter.next ();

 //Set the SupplierName field to a new value.
 if (field.getFieldName ().equalsIgnoreCase ("SupplierName")) {
 field.setUserInput ("Software Center Inc.");
 }

 //Otherwise just print out current value.
 System.out.println ("Name : " + field.getFieldName ());
 System.out.println ("Value: " + field.getUserInput ());
}

//Set the new value.
results = processAPI.setPackageFields (ctx, package.getPackageID (), fields);

//The return object is simply a list of the fields that were set.

Placing a package in flow

You can place a package into a process with the following code:

//Create the request object.
ISCSFixedPlaceInFlowRequest req = processAPI._createPlaceInFlowRequest
("sisadapter");

//Retrieve a list of possible start events for the associated template
List startEvents = processAPI.getTemplateStartEvents (ctx, "VoucherPackage");

//Pick the appropriate start event.
ISCSFixedTemplateStartEvent se = (ISCSFixedTemplateStartEvent)startEvents.get (1);

//Package object assumed to be created prior to snippet.
//Populate request object
req.setPackageID (package.getPackageID ());
req.setComment ("Attempt to place in flow");
req.setProcessName ("Demo AP Process");
req.setStartEvent (se.getEventName ());

//Perform the request, this method is capable of processing several requests
//at once here we just do the one.
List results = processAPI.placePackageInFlow (ctx, Arrays.asList (new
Object[]{req}));

//We only performed one request so there should only be one result.
ISCSFixedPlaceInFlow pif = (ISCSFixedPlaceInFlow)results.get (0);

//Echo result object
System.out.println ("Package ID: " + pif.getPackageID ());
54

UCPM API Developer’s Guide Understanding the Fixed API
System.out.println ("Request Index: " + pif.getRequestIndex ());
System.out.println ("Was placed in flow: " + pif.wasPlacedInFlow ());

Locking and unlocking a package

This is an example of locking and unlocking a package:

//Package object assumed to be retrieved prior to example:
results = processAPI.lockPackage (ctx, package);

//The results object is a list of results, we only locked one package
//so there should be only one result
ISCSFixedPackageResult result = (ISCSFixedPacakgeResult)results.get (0);

//Echo Results
System.out.println ("Has succeeded: " + result.hasSucceeded ());
System.out.println ("Package ID: " + result.getPackageID ());
System.out.println ("Auto Attachment Type ID: " + result.getAutoAttachmentTypeID
());

//If you want to lock a package in queue, repeat the above code and replace the
//method with lockPackageInQueue and specify the queueName as an additional
//String parameter.

//Unlock the package in the same way
results = processAPI.unlockPackage (getSISContext (), package);
55

UCPM API Developer’s Guide Understanding the Common API
CHAPTER 5

Understanding the Common API

The UCPM API is modeled into a set of Services APIs, which are API calls that
communicate with the target server, and into ISCSObject objects, which are the
returned value objects from the server.

The Common API is a branch of the UCPM API that deals with both Stellent Content
Server and Stellent Image Server, by providing a common set of APIs that are
shared between both the Active API and the Fixed API. These include searching,
contribution, and information querying.

In this section:

! Accessing the Common API

! Common metadata maps

! Developing with the Common API

! Using the Common API

Important: The current version of CIS uses the UCPM API which is not compatable
with CIS 7.2. See “Migrating from Version 7.2” on page 73 for more information.

Note: See the JavaDocs for information on the Class/Interface, Field, and Method
descriptions. The complete CIS JavaDoc is located in the /docs/cis-javadoc-all.zip file
(the /docs/cis-javadoc-ucpm.zip file contains only the UCPM API information).

Accessing the Common API
The UCPM API is available on the CISApplication class via the getUCPMAPI ()
method. The getUCPMAPI () method returns a reference to the IUCPMAPI object,
allowing access to all UCPM API objects. Public interface IUCPMAPI is the locator
for the Active, Fixed, and Common API objects. The Common API is avalable via
getCommonAPI (), which returns a reference to the SCSCommonAPI object.

Note: The fully qualified method name is “CISApplication.getUCPMAPI
().getCommonAPI ()”.

The Common API comprises:

! ISCSCommonAdministrativeAPI — used to create, load, and persist
common metadata maps.

! ISCSCommonAdministrativeAdapterAPI — implementation of the
administrative commands.

! ISCSCommonDocumentAPI — used to contribute content to a repository and
migrate content from one repository to another.

! ISCSCommonSearchAPI — implementation of the search commands used to
perform federated queries across multiple repositories.

The interface ICommandFacade is the entry point into the command interface. It
allows for interaction with the command layer, including command retrieval,
registration, and execution. Commands are referenced by name, where a name can
be any string. A name consisting of the dot character (".") will be treated in a
hierarchy, where the first segment is the top-level category, and the next segment is
56

UCPM API Developer’s Guide Understanding the Common API
the second-level category, etc. Commands can either be retrieved by their full
command name or by browsing all available commands.

Note: The fully qualified class name is “com.stellent.command.ICommandFacade”.

Example using ISCSCommonSearchAPI:

ISCSCommonSearchAPI commandAPI =
 (ISCSCommonSearchAPI)m_commandFacade.getCommandAPI
 ("search", com.stellent.command.ICommandFacade.TYPE_UCM_COMMON_API);

Common metadata maps
To create a mapping, you can simply create an XML file. This example illustrates a
common metadata map:

<!--
 Default metadata map for the different adapter types. These values will be used
if a metadata map is not specified. The name attribute corresponds to the adapter
type (i.e., "scsadapter" is a Stellent Content Server Adapter and "sisadapter" is a
Stellent Image Server adapter).
-->
<metamap>
 <adapter name="scsadapter">
 <common>
 <map name="Title" native="dDocTitle" />
 <map name="Author" native="dDocAuthor" />
 <map name="Date" native="dInDate" />
 <map name="ID" native="dID" />
 </common>

 <contribution>
 <!-- native fields are used only for contribution -->
 <native name="comments" default="" override="true" />

 <!-- common fields refer back to common map -->
 <!-- can also be tagged with default and override attributes -->
 <common name="title" />
 <common name="author" />
 </contribution>
 </adapter>

 <adapter name="sisadapter">
 <common>
 <map name="Title" native="DocType" objectClass="SImageHRAppIndex" />
 <map name="Author" native="EmployeeName" objectClass="SImageHRAppIndex" />
 <map name="Date" native="DocDate" objectClass="SImageHRAppIndex" />
 <map name="ID" native="SSN" objectClass="SImageHRAppIndex" />
 </common>
 </adapter>
</metamap>

This metadata map specifies both a content server (‘scsadapter’) and an image
server (‘sisadapter’). The top-level node is <metamap> which can contian any
number of <adapter> nodes. The <adapter> node takes a name attribute, which
should correspond to the adapter that is configured in the adapter config XML for
57

UCPM API Developer’s Guide Understanding the Common API
the repository you want to define. The above metadata map contains two adapters:
one for a content server (‘scsadapter’), the other for an image server (‘sisadapter’).

Each <adapter> node can have two sub-nodes: <common> and <contribution>. The
<common> node is used to create metadata field mappings. To create a field
mapping, you need create only a sub-node <map> under the <common> node, and
then provide the attributes ‘name’ and ‘native’.

! The ‘name’ attribute is the common name you will set for each adapter you
configure and expect to make common calls on.

! The ‘native’ attribute is the name of the metadata field as seen by the specific
repository. For example, in the above example, we have mapped the common
name ‘title’ to the native name ‘dDocTitle’ on a content server instance.

To create a similar mapping for an image server, you need to specify an additional
attribute. An image server repository allows different metadata models to be
present in the same repository and separates them by Application type. The
‘objectClass’ attribute to the <map> node corresponds to this Application type.

In the above example, the same common name ‘title’ is mapped to the native
‘DocType’ of the application ‘SImageHRAppIndex’ in the image server repository
defined by the adapter name ‘sisadapter’.

The <contribution> node is used for moving pieces of content between disparate
repositories. The <common> sub-nodes refer back to common name mappings set
up in the <common> node, and are used to provide a “common” metadata name
mapping to a “native” metadata name.

Two additional attributes can be specified (if needed) for the <contribution> node:

! A default value that will be used during the contribution if no value is found.

! An override parameter that indicates that the default value should prevail even
if a value is found.

If you want to use a default or override value for a native field for which there is no
common mapping, you can specify this by adding a <native> node with the ‘default’
or ‘override’ attributes.

Developing with the Common API
Once the CISApplication object has been initialized, you can retrieve the Fixed API
objects using this code:

CISApplication cisApplication =
 CISApplication.initializeServer (myHost, myPort);
 cisApplication.getUCPMAPI ().getCommonAPI ();

Many of the Common API calls require an ISCSCommonContext, which is a
container for the specific context objects that refer to the various adapters that the
call is meant to operate against.

For example, this code creates a list of repositories to query and sets up your
common context for both a content server and an image server repository:

//Create list of repositories to query.
ISCSContext activeContext =
 cisApplication.getUCPMAPI ().getActiveAPI ()._createSCSContext ();
ISISContext fixedContext =
58

UCPM API Developer’s Guide Understanding the Common API
 cisApplication.getUCPMAPI ().getFixedAPI ()._createSISContext ();

ISCSCommonContext commonContext =
 cisApplication.getUCPMAPI ().getCommonAPI ()._createCommonContext ();

activeContext.setAdapterName ("scsadapter");
activeContext.setUser ("sysadmin");

fixedContext.setAdapterName ("sisadapter");
fixedContext.setUser ("Administrator");

commonContext.addContext (activeContext);
commonContext.addContext (fixedContext);

//Your common context is now setup to hit two repositories:
//a content server and an image server.

Using the Common API
The Common Search and Common Document APIs are discussed and sample code
provided. These APIs perform the task of searching across multiple repositories,
contributing content to a repository, and migrating content from one repository to
another.

Note: Additional samples can be found in the SDK/Samples/CodeSamples/
directory.

Common Search API
The ISCSCommonSearchAPI is the implementation of the search commands used to
perform federated queries across multiple repositories. A search will return an
ISCSCommonSearchResponse object. This object contains search status information
and a list of ISCSCommonContent objects which identify which adapters to query
and what user information to use.

To perform a federated search

You can perform a search against as many repositories as you have configured in
your adapter configuration. By populating the Common Context and creating a
metadata map, you can begin to execute search queries that replicate the Verity
syntax that the content server accepts.

However, when putting common names into the query, the '$' escape-character
must be used. For example, searching for authors containing the string ‘Farley’
would result in this query:

"$author <substring> 'Farley'"

The Common API then substitutes the common name $author for the appropriate
native name. For example, in the case of the content server, this will be replaced by
‘dDocAuthor’.

After the results are obtained, you can get an iterator over the results, and specify
page size and sort criteria. The sort criteria can be “Ascending” or “Descending”
over any commonly defined metadata field.

The following example assumes that the CISApplication, common context, and
common metadata map have already been created and initialized:
59

UCPM API Developer’s Guide Understanding the Common API
//Perform search retrieving only 100 results per adapter
//configured within the common context.
ISCSCommonSearchResponse searchResponse =
 m_commonSearch.search
 (commonContext,"$author <substring> 'Farley'", metadataMap, 100);

//You can get the total results
System.out.println ("Total Count: " + resp.getTotalCount ());

//Or the count by adapter
System.out.println ("SIS Count: " + searchResponse.getCount ("sisadapter");
System.out.println ("SCS Count: " + searchResponse.getCount ("scsadapter");

//Now that we have some results we can create our sort criteria
ISCSSortCriteria sortCriteria = new SCSSortCriteria ();

//Sort by title in ascending order.
sortCriteria.setSortField ("Title");
sortCriteria.setSortOrder (ISCSSortCriteria.ASCENDING);

//Get result list based on this ordering.
resultList = searchResponse.getResults (sortCriteria);

//Get a special iterator object that has convenience methods around paging results.
//This takes in a page size.
ISCSResultIterator resultIterator = resultList.getResultIterator (20);

//Print the number of pages within iterator. (based on page size specified earlier)
System.out.println ("Total pages: " + resultIterator.getTotalPages ());

ISCSProperty property;
ISCSContent content;
for (int i = 0; i < iter.getTotalPages (); iter.pageForward ()) {
System.out.println ("Current Page: " + resultIterator.getCurrentPage ());
 System.out.println ("Can page forward: " + iter.isCanPageForward ());

 while (iter.hasNext ()) {
 //The iterator can get the next piece of content like this
 content = resultIterator.nextContent ();

 //The ISCSContent object can find a value with a common name and a metadata map
 property = content.getProperty ("author", metadataMap);
 System.out.println ("Author : + property.getValue ().getStringValue ());
 }
}

Common Document API
The ISCSCommonDocumentAPI is used to contribute content to a repository and
migrate content from one repository to another. The tasks of common migration
and common retrieval are discussed and sample code provided.

Common migration
In the following example, a piece of active content is moved from a content server
to an image server. This example assumes that the CISApplication, common
context, and an ISCSActiveContent object have already been retrieved:
60

UCPM API Developer’s Guide Understanding the Common API
//In this example we'll create our metadata map programmatically
ISCSCommonMetadataMap metadataMap =
 cisApplication.getUCPMAPI ().getCommonAPI ()
 .getAdministrativeAPI ()._createMetadataMap ();

//Setup the common mappings for type and description.
metadataMap.addMapping ("type", "dDocType", "scsadapter");
metadataMap.addMapping ("description", "dDocTitle", "scsadapter");

metadataMap.addMapping ("type", "DocType", "sisadapter");
metadataMap.addMapping ("description", "Description", "sisadapter");

//Create a contribution map for the sisadapter for the "UniversalMain" application
//and give the common contrib map a name of "Universal"
ISCSCommonContributionMap sisContribMap =
 metadataMap._createContributionMap
 ("sisadapter", "Universal", "UniversalMain");

//The defaults for the common fields are empty if not found,
//and set not to override already existing values.
sisContribMap.addCommonContributionField ("type", "", false);
sisContribMap.addCommonContributionField ("description", "", false);

//Map the ADACCT Content Server type to the common "Universal" name.
ISCSCommonContributionMap scsContribMap =
 metadataMap._createContributionMap ("scsadapter", "Universal", "ADACCT");

//Retrieve the stream for our already retrieved content object.
SCSContentFileStream activeStream =
 cisApplication.getUCPMAPI ().getActiveAPI ().getFileAPI ().getFile
 (scsContext, content.getActiveContentID ());

//Perform the contribution.
ISCSCommonCheckinResponse checkinResp =
 m_documentAPI.checkinStream
 (fixedContext, "Universal", metadataMap, content, stream);

//Get the identifier for the newly created content item.
ISCSID id = checkinResp.getIdentifier ()

Common retrieval
After you have retrieved a piece of ISCSContent or an ISCSID from a search, you
may query what content pages are associated with this document.

! If the backing content is from a content server, the list of ISCSContentPage
objects that you will receive will represent the streams for PrimaryFile,
AlternateFile, and DynamicConversion.

! For the image server, the page objects represent the various pages of content
that are returned by the repository.

The following example assumes that the CISApplication, common context, and an
ISCSID object have already been been retrieved:

//This call gets you a list of available page objects (ISCSContentPage)
ISCSCommonDocumentAPI documentAPI =
 cisApplication.getUCPMAPI ().getCommonAPI ().getDocumentAPI ();
List pages = documentAPI.getContentPages (commonContext, identifier);

//Print out some properties about each page and save its stream to disk.
Iterator iter = pages.iterator ();
61

UCPM API Developer’s Guide Understanding the Common API
ISCSContentPage page;
InputStream in;
FileOutputStream out;

while (iter.hasNext ()) {
page = (ISCSContentPage)iter.next ();
System.out.println ("Name: " + page.getName ());
System.out.println ("Description: " + page.getDescription ());
System.out.println ("Source Adapter: " + page.getSourceAdapter ());

//Get the input stream associated with this page.
in = documentAPI.getContentStream (commonContext, page);
out = new FileOutputStream (page.getName ());

//Write the stream to disk.
byte[] bytes = new byte[64];
int read;
while ((read = in.read (bytes)) != -1) {
out.write (bytes, 0, read);
}
in.close ();
out.close ();
}

//Get the primary stream directly by passing in the identifier.
in = documentAPI.getContentStream (commonContext, identifier);

In the code above, note that you may also get the primary stream directly by
passing in the identifier for the content page to getContentStream (), on the content
server this will return the PrimaryFile, on the image server this will return the native
file.
62

UCPM API Developer’s Guide Extending Commands
CHAPTER 6

Extending Commands

Stellent Content Integration Suite (CIS) contains a number of APIs, which are a
collection of command objects of a given type grouped in common categories. The
CIS APIs include the UCPM API, which, in turn, includes the Active API, Fixed API,
and Common API.

The CIS layer can be extended to allow users to add in their own custom
commands, and, in turn, their own custom APIs. Once a command is authored, the
provided build environment will create the necessary files, automatically generate
the wrapper API classes, and generate any necessary configuration files.

This section explains how to extend the UCPM API layer:

! About APIs

! ICommand definition

! Creating an ICommand object with the CommandBuilder SDK

! Adding a new command

! Building a command

Note: See the JavaDocs for information on the Class/Interface, Field, and Method
descriptions. The complete CIS JavaDoc is located in the /docs/cis-javadoc-all.zip file
(the /docs/cis-javadoc-ucpm.zip file contains only the UCPM API information).

About APIs
A command is the main class of an API. All API calls get routed to a particular
command for execution. Specifically, a command is a single Java class that
implements the ICommand interface. Commands of the same type are organized
into APIs. Inside each API, commands are further organized into categories, which
can have sub-categories and commands as children.

Each ICommand class is marked with metadata that describes the API to which it
belongs, what category it lives in, and its API name. The build process uses this
information to dynamically create API classes and implementations that route API
calls to the command objects for execution. For example, in the internal commands
there is a command object that is marked as an “active” command type belonging
to the “file” category with the name “getFile”.

During the build process, the ISCSActiveFileAPI file is generated with the method
“getFile”. (Notice the ISCS<api type><category>API format; <api type> is the type
of API marked on the command, and <category> is the category defined in the
command.) A call to ISCSActiveFileAPI.getFile() translates internally to a lookup of
the command ‘file.getFile’ of type ‘active’. The command is located, the properties
are set, and the command is routed through the command layer. Eventually, the
command’s execute method is called. In this way, commands make up methods
that are part of categories grouped together into common APIs.

All the added commands created by the SDK will be of type “custom” and will make
up the Custom API. If we create three commands—two in the “document” category
and one in the “information” category—we would have two main interfaces that
63

UCPM API Developer’s Guide Extending Commands
make up the custom SDK (as built by the Command Builder SDK using the default
naming values): IAcmeDocumentAPI and IAcmeInformationAPI.

The IAcmeDocumentAPI interface would have two methods, one for each command
in the “document” category. The IAcmeInformationAPI interface would have a single
method for the one command in the ”information” category.

ICommand definition
A command is responsible for executing the business logic. In the case of content
server commands, it is responsible for formulating the query for the content server.
A command is usually implemented as a single Java class, which is decorated with a
number of XDoclet tags that describe the behavior for functionality of the command.

The build process reads these tags to generate a strongly-typed API class that
encapsulates calls to all commands belonging to a particular category. This step
generates the API interface. For example, the search command described above is
generated into a Java interface called ISCSActiveSearchAPI, which has two methods,
both called search, that make calls into the search command.

The ICommand Java objects are simply JavaBeans that encapsulate business logic.
A typical ICommand object will have a number of getter and setter methods for each
property the command wishes to expose. The ICommand also implements a
method, executeCommand(), that is called by the server when the command is
executed. This is the main method of the command and it should hold the business
logic.

Server-specific commands

Commands written to communicate with the content server can extend the
SCSCommand class, which is found in the com.stellent.command.scs.impl package.
The SCSCommand class does much of the work in order to prepare the class to
make a content server request. For such a request, the subclass only needs to
override the populateBinder () method and set the appropriate binder properties.

Likewise, to add a command that talks to the image server, the SISCommand class
should be extended, as it provides the necessary infrastructure to communicate
with the image server.

Creating an ICommand object with the
CommandBuilder SDK

To create an ICommand object, you must:

 1. Create the Command Java class that implements ICommand (often extends
Command or one of its subclasses).

 2. Implement the executeCommand () method with the appropriate business
logic.

 3. Decorate the command with the Stellent XDoclet tags.
64

UCPM API Developer’s Guide Extending Commands
Command development kit
Included in the CIS distribution is a development kit for building new commands and
extending existing commands. Located in the <install_dir>/sdk/CommandBuilder
directory, the kit includes an Ant build.xml file that allows you to build the
commands and package them appropriately. Also included are all the necessary
library files and distribution files for creating a new distribution EAR file and client
JAR files.

To run the build, from the command line, type:

cd $installdir/sdk/CommandBuilder
ant dist

Note: Ant must be installed for this process to work properly (see
http://ant.apache.org/).

All new source files should be placed in the <install_dir>/sdk/CommandBuilder/
src/java directory in their appropriate package structure. This ensures the Ant script
will properly pick up the files when performing a build. Also, any new libraries
required for the compilation need to be placed in an appropriate sub-directory of
the <install_dir>/sdk/library directory. Here is a brief definition of each directory in
the build SDK:

There are a number of defined Ant targets in the build.xml file that can be executed,
as described in the following table. All the targets can be run with the same syntax
(replace <target> with a valid target name):

cd $installdir/sdk/CommandBuilder
ant <target>

The build.properties file, which is in the same directory as the build.xml file, allows
you to override property values with values specific to your build. The following
table describes some properties (see the build.xml file for more property
information):

Directory Description

.../library The SDK shared library repository (contains the libraries needed for building).

src/java The source files for the new commands.

target Directory generated during the build; holds the classes and other build-related files
(after the build is run; holds the built files).

Target Description

compile The default target; it is run if no target is specified. It will generate the necessary
files and then compile the generated files along with the files in the src directory.

jar Creates the custom_commands.jar file after compiling the source files. This file is not
deployable by itself; it is used to create a deployment with the “dist” target.

dist Creates a distribution. This will generate the deployable distribution file that can be
re-deployed into the target application server or servlet engines; it will generate the
JAR, EAR, and WAR files.

clean Cleans up the build; removes any generated files created during previous builds.
65

UCPM API Developer’s Guide Extending Commands
SCS Command components
An SCS Command (Stellent Content Server Command) is a single Java object, with
bean properties, that implements the interface ISCSCommand. To write a command
that communicates with the content server, one would create an ISCSCommand.

There are a number of files associated with the SCS Command, such as the
ISCSCommandAPI, the commandbeans.xml, the API implementation class and the
CommandDescriptor bean. Each of these files are generated, via XDoclet, during the
build process.

JavaDoc tags
The logic for generating each of the associated files is embedded in the Command
Bean via XDoclet entries that are read during the build. The tags tell the build
system which IDC Service (content server service) is being executed, the command
name and category, and what properties are available to the Command API.

scs.command

This tag is placed at the top of each SCS Command Bean class. It has four
attributes:

For example, if we had a command that was going to call the ADD_USER service, we
would add the following tags to our SCS Command Bean:

/**
 * @scs.command name="addUser"
 * category="directory"
 * service="ADD_USER"
 */
public class AddUserCommand extends SCSCommand {
//class definition follows...
}

Property Description

api.identifier Should be your company name, starting with a capital letter. This name will be used
when generating API names during the build.

api.package The java package name for your generated API classes. Suggested name is
com.<company>.integration.scsapi. (Note: it should not start with “com.stellent”).

Attribute Description

name The name of the command method.

category The category the command resides in.

service The name of the IDC Service (content server service) that will be executed.

returnType The full class name of the Object that will be returned from this SCS Command.
! If omitted, the default is idcbean.data.LWDataBinder.
66

UCPM API Developer’s Guide Extending Commands
scs.commandproperty

This tag is placed on the getter for each property that will be made available via the
SCS Command API and has one property that may be set. The ‘optional’ property
can be either “true” or “false” and tells the SCS Command layer that this is an
optional parameter. For example:

scs.commandproperty optional="true"

scs.method

This tag describes the method that will be exposed via the SCS Command API that is
generated from this command. There can be any number of scs.method tags. Each
one represents a single method. The api property must be set to ‘custom’; the three
other properties can be specified.

/**
 * @scs.command name="addUser"
 * category="directory"
 * service="ADD_USER"
 * @scs.method parameters="SCSContext, userName, authType, fullName"
 * api="custom"
 */
public class AddUserCommand extends SCSCommand {
 protected String m_userName = null;
 protected String m_authType = null;
 protected String m_fullName = null;

 /**
 * @scs.commandproperty
 */
 public String getUserName () {
 return m_userName;
 }

 public void setUserName (String name) {
 m_userName = name;
 }

 /**
 * @scs.commandproperty
 */
 public String getAuthType () {
 return m_authType;
 }

Property Description

name The name of the API method.
! If not set, it defaults to the name of the command.

parameters A comma-separated list of parameters that represents the method signature. Only
parameters identified by the scs.commandproperty may be specified; the parameters
are specified using their JavaBean name (i.e., for the method getName(), the
parameter is ‘name’).

returnType You can optionally set returnType, which is the fully qualified name of the class to be
returned or “void” if the method does not return an object.
! If no returnType is set, the default is

"com.stellent.ucpm.active.ISCSServerResponse".

api The name of the API to generate: this must be set to ‘custom’.
67

UCPM API Developer’s Guide Extending Commands
 public void setAuthType (String authType) {
 m_authType = authType;
 }

 /**
 * @scs.commandproperty optional="true"
 */
 public String getFullName (String fullName) {
 m_fullName = fullName;
 }

 public void setFullName (String fullName) {
 m_fullName = fullName;
 }

 //other implementation follows...
}

Adding a new command
An individual SCS Command is made up of a single JavaBean that holds the logic for
executing the command, which typically is a call to the content server. The
command is responsible for providing the necessary properties that can be set
through standard JavaBean conventions for the command to execute. The
command is also responsible, optionally, for validating the command properties.

Creating a new command

The following example illustrates the creation of a new command based on a given
IDC Service (content server service). In this example, we will create an addUser
command in the new command category “directory”, which will allow us to add
users to the content server via our command interface. This will be done by
executing ADD_USER.

Step 1: Create the Java class that will become the command for
implementing our custom logic.

In the /CommandBuilder/src/java directory, create a package structure for your
command: com.acme.contentserver.commands.directory.

It is useful to organize the commands so their category names match their package
names. Since our root command structure is at the package
com.acme.contentserver.commands, we create a directory package to correspond
with the “directory” category of our command and place the Java class in this
package.

Step 2: Identify the service.

As mentioned, we will use the ADD_USER service (for a full list of available services
and their usage, consult the Stellent Content Server documentation). We will then
create the AddUserCommand Java class inside our created package space. The Java
class should extend SCSCommand, as the SCSCommand class provides the
infrastructure for executing IDC Services (content server services) easily. We also
add the necessary XDoclet header labeling this class as a SCS Command Bean:

package com.acme.commands.contentserver.directory;
68

UCPM API Developer’s Guide Extending Commands
import com.stellent.common.bean.ParameterValidationException;
import com.stellent.command.scs.impl.SCSCommand;

/**
 * @scs.command category="directory"
 * service="ADD_USER"
 * name="addUser"
 */
public class AddUserCommand extends SCSCommand {
 //… insert implementation here
}

Step 3: Add our parameters.

The ADD_USER service has two required parameters: ‘dName’ and ‘dUserAuthType’
(for details, consult the Stellent Content Server documentation). So we add two
parameters, ‘name’ and ‘authType’, to our command and label them with the
appropriate JavaDoc comments that identify them as SCS Command Bean
properties:

package com.acme.commands.contentserver.directory;
import com.stellent.common.bean.ParameterValidationException;
import com.stellent.command.scs.impl.SCSCommand;

/**
 * @scs.command category="directory"
 * service="ADD_USER"
 * name="addUser"
 * @scs.method parameters="SCSContext, name, authType"
 * api="custom"
 */
public class AddUserCommand extends SCSCommand {
 protected String m_name = null;
 protected String m_authType = null;

 /**
 * @scs.commandproperty
 */
 public String getAuthType () {
 return m_authType;
 }

 public void setAuthType (String authType) {
 m_authType = authType;
 }

 /**
 * @scs.commandproperty
 */

 public String getName () {
 return m_name;
 }

 public void setName (String name) {
 m_name = name;
 }
}

69

UCPM API Developer’s Guide Extending Commands
Step 4: Add the code to execute the IDC Service.

This can be done by extending the populateBinder () method. This method is
defined in the parent class, SCSCommand, and takes two parameters:
‘LWDataBinder’, which we will populate with the IDC Service (content server
service) data; and ‘ICommandExecutionContext’, which we can use to look up
services in the system. We will implement this method and set the appropriate
parameters on the data binder:

package com.acme.commands.contentserver.directory;
import com.stellent.common.bean.ParameterValidationException;
import com.stellent.command.scs.impl.SCSCommand;

/**
 * @scs.command category="directory"
 * service="ADD_USER"
 * name="addUser"
 * @scs.method parameters="SCSContext, name, authType"
 * api="custom"
 */
public class AddUserCommand extends SCSCommand {
 protected String m_name = null;
 protected String m_authType = null;

 protected LWDataBinder populateData
 (LWDataBinder binder, ICommandExecutionContext context) throws CommandException {

 //call the super class
 binder = super.populateBinder (binder, executionContext);

 //add in our properties
 binder.putLocal ("dName", getName ());
 binder.putLocal ("dUserAuthType", getAuthType ());

 //return our populated binder
 return binder;
 }

 //property definitions left out...

Optionally...

We can override the validate method to provide some parameter validation:

package com.acme.commands.contentserver.directory;
import com.stellent.common.bean.ParameterValidationException;
import com.stellent.command.scs.impl.SCSCommand;

public class AddUserCommand extends SCSCommand {
 public void validate () throws ParameterValidationException {
 //call the superclass first
 super.validate ();

 //the exception object
 ParameterValidationException exp = null;

 if (getUser () == null || getUser ().length () < 1) {
 (exp = getException (exp)).addError ("userName", "Username was not set");
 }

 if (getAuthType () == null || getAuthType ().length () < 1) {
70

UCPM API Developer’s Guide Extending Commands
 (exp = getException (exp)).addError ("authType", "Authtype was not set");
 }

 if (exp != null) {
 throw exp;
 }
}

//rest of the command follows...

Customizing the build

Before building the source code, some modifications need to be made to the build
process to customize the output of the generated files. Open the CommandBuilder/
build.properties file in an editor and change the following properties values
accordingly:

The build will generate a number of files that will create the API wrapper around
your command objects. The files generated, and their specific use, are as follows
(assuming the properties were not changed from their defaults), and are all
generated in the /CommandBuilder/generated directory.

All the generated files are packaged, along with your custom classes, in the custom-
commands.jar file, which is placed in the appropriate EAR or WAR file, depending
on the appserver target of the build.

Building a command
After the new command is written, you must complete these steps in order to use
the new SCS Command Bean:

 1. Modify the build.properties file to reflect the target application server and the
desired application package (e.g., com.acme.commands).

 2. Build the command using the supplied Ant scripts ‘dist’ target.

 3. Redeploy the updated EAR files (located in the target directory).

 4. Reference the generated cis-custom-7.6.1.jar in any client application that
needs to use the extended commands (located in the target directory).

Property Description

api.identifer Name of your company, for example, Acme.

api.package Package name of the generated APIs (which should not start with
com.stellent), for example, com.acme.integration.stellentapi.

Generated file Description

commandbeans-custom.xml XML file containing the mapping of command names to command
implementations.

com.acme.integration.stellent.api.A
cmeCommandAPI

API accessor class, which is the class containing the methods to
retrieve the individual custom APIs.

com.acme.integration.stellentapi.* API interfaces and implementation classes; provides API wrapper
to the command objects.
71

UCPM API Developer’s Guide Extending Commands
Deploying the command

The build will have generated two EAR files called cis-server-7.6.1.ear and cis-
admin-7.6.1.ear (for the server and administration application, respectively) in the
sdk/CommandBuilder/target directory.

The new EAR files need to be deployed to the target application server. (Consult the
installation and deployment instructions for your application server.)

The build will also generate a JAR file, called cis-custom-7.6.1.jar. This new JAR file
needs to be deployed with all the client applications, such as portlets, before you
can use the newly updated commands.

Using the new Command API

Once the command is built and deployed (on both the server and all clients), it can
be consumed via the newly created custom API. The following code shows how to
access the command accessor class, assuming the default naming scheme. We use
the CISApplication class to retrieve our custom API accessor by name; from there,
we can access all the generated API classes:

//Grab the Custom API Accessor class by its generated name.
AcmeCommandAPI acmeCommandAPI =
 (AcmeCommandAPI)m_cisApplication.getBean ("AcmeCommandAPI");

//Create our context.
ISCSContext context =
 m_cisApplication.getUCPMAPI ().getActiveAPI ()._createSCSContext ();
context.setUser ("sysadmin");

//Get our directory API object from the Command API.
IAcmeDirectoryAPI directoryAPI =
 acmeCommandAPI.getDirectoryAPI ();
ISCSServerResponse response = directory.addUser (context, "newuser", "local");
//do something with the returned server response object

Using the command from the Command Web Application

After deploying the new command and restarting the server, the new command will
be available from the CIS Administration Application (http://localhost:port/scscis). By
clicking “Browse APIs” and selecting the API type “Custom”, you will be able to
browse your custom deployed APIs. From here, you can test the execution of the
API.
72

UCPM API Developer’s Guide Migrating from Version 7.2
APPENDIX A

Migrating from Version 7.2

If you are upgrading from Stellent Content Integration Suite version 7.2, you should
be aware of a significant change in the product. CIS version 7.2 uses LWDBs (Light
Weight Data Binders) as part of the integration architecture. In the current version,
this layer has been replaced by the Universal Content and Process Management
(UCPM) API.

To facilitate migration, you can continue to use the version 7.2 API and migrate
code from it to the current release. However, compiling with the 7.2 API will result
in returned “warning” messages. In version 8.0, the 7.2 APIs will be removed and
attempting to compile will result in an error.

In this section:

! Initialization--START HERE

! API calls

! Property names and data access

! Property names and data access

Initialization--START HERE
CIS version 7.2 requires a call to the ICommandClient class to initialize the code. In
the current release, initialization happens in the com.stellent.cis.CISApplication
class, and the call is now more explicit: you specify the type of server and the
location of the adapter configuration file (adapterconfig.xml) in the initialization call.

Note: See “Adapter configuration file” on page 24 for more information.

//7.2 code
ICommandClient commandClient = new CommandClient ();
commandClient.connect ();

//Current release code
CISApplication cisApplication = CISApplication.initializeServer

The code for the current release also has different methods for initializing a CIS client
versus initializing a CIS server. In the current release, if you are connecting to another CIS
server instance, you use the initializeClient () methods on the CISApplication class. If you
are initializing a CISApplication as a server, you use one of the initializeServer () methods.

API calls
Calls to the Application Programming Interface (API) are now handled Active API
portion of the UCPM API. The UCPM API differs from the 7.2 API in that all objects
used in the UCPM API are part of the UCPM object model. The parameters to the
APIs, and the return values, all implement ISCSObject. This allows for a much
cleaner interface when calling the content server code.
73

UCPM API Developer’s Guide Migrating from Version 7.2
All of the APIs available in the 7.2 API have been ported over, in one form or
another, to the UCPM API. These APIs are now accessed using the
CISApplication.getUCPMAPI ().getActiveAPI () method. The API names are similar to
the 7.2 API names: the Active API objects are named ISCSActive<category>API.

APIs are no longer retrieved via the ICommandFaçade (although this method still
works). Now, the appropriate method to access an API is to use the accessor
methods off the CISApplication object. For example, to retrieve the Search API:

//7.2 code
ISCSSearchCommandAPI searchAPI =
 (ISCSSearchCommandAPI)m_commandFacade.getCommandAPI ("search");

//Current release code
ISCSActiveSearchAPI searchAPI =
 m_cisApplication.getUCPMAPI ().getActiveAPI ().getSearchAPI ();

Notice the use of the CISApplication accessor methods. It is no longer required to look
up methods using the command facade. In CIS 7.2, there was also a mechanism for
looking up the Command Bean directly, using the ICommandFacade object. That method
of making API calls is deprecated; all calls should go through the UCPM API.

Context

All APIs in the UCPM API still require an ISCSContext context object. The creation of
the context object, however, has been moved to the SCSActiveAPI. This has been
done because the other APIs of the UCPM API, including the Fixed API and the
Common API, have their own versions of the context object. The code to create the
context object should look like the following:

//Current release code
ISCSContext context =
 m_cisApplication.getUCPMAPI ().getActiveAPI ()._createSCSContext ();
context.setAdapterName ("myadapter");
context.setUser ("sysadmin");

API naming

All the 7.2 APIs have counterparts in the UCPM API. The naming convention used
for each API is slightly different. In CIS 7.2, the API naming convention is
ISCS<category>CommandAPI. In the current release, the naming convention is
ISCSActive<category>API. Using this, you can determine how to find the new
version of the API classes. For example, look at the following CIS 7.2 code that
looks up the Document Checkin API and the Workflow API:

//7.2 code
ISCSDocumentCheckinCommandAPI checkinAPI =
 (ISCSDocumentCheckinCommandAPI)m_commandFacade.getCommandAPI
 ("document.checkin");
ISCSWorkflowCommandAPI workflowAPI =
 (ISCSWorkflowCommandAPI)m_commandFacade.getCommandAPI ("workflow");

//Current release code
ISCSActiveDocumentCheckinAPI checkinAPI =
 m_cisApplication.getUCPMAPI ().getActiveAPI ().getDocumentCheckinAPI ();
ISCSActiveWorkflowAPI workflowAPI =
 m_cisApplication.getUCPMAPI ().getWorkflowAPI ();
74

UCPM API Developer’s Guide Migrating from Version 7.2
Method parameters

The 7.2 API and the UCPM API share similar names for method calls. For example,
checkinFileStream () is available on both the ISCSDocumentCheckinCommandAPI
and the ISCSActiveDocumentCheckinAPI interfaces. However, calling the method is
different for most API calls. The parameters for the methods in the UCPM API often
require UCPM objects as opposed to taking in simple types (strings, integers, etc.).
For example, calling at the checkinFileStream () method from the 7.2 API would look
like the following:

//7.2 code
ISCSDocumentCheckinCommandAPI checkinAPI =
 (ISCSDocumentCheckinCommandAPI)m_commandFacade.getCommandAPI
 ("document.checkin");

//create the context object
ISCSContext context = m_commandFacade.createSCSContext ();
context.setUser ("sysadmin");
context.setAdapterName ("myadapter");
Map metaMap = new HashMap ();
metaMap.put ("xComments", "Test Comment");

//Build the content stream
File file = new File ("test.txt");
SCSContentFileStream stream =
 new SCSContentFileStream (new FileInputStream (file),
 "test.txt", "text/plain", file.length ());

//Make the API call
LWDataBinder response =
 checkinAPI.checkinFileStream (context, "test_01", "ADACCT", "Public", null,
 "sysadmin", null, null, metaMap, stream);

With the current release, the checkinFileStream () method requires an
ISCSActiveContent to be passed into the method. ISCSActiveContent, like all
ISCSObject objects, can be created by using the ‘_create’ method from the target
API. In this instance, the ISCSActiveDocumentCheckinAPI has a method
_createContent (), which creates an empty ISCSActiveContent object.

The object can then be set with the appropriate property values. Likewise, the
method also needs an ISCSActiveContentID, which can be created by using the
_createActiveContentID () method on the SCSActiveAPI object. Our new code would
then look like:

//Current release code
ISCSActiveDocumentCheckinAPI checkinAPI =
 m_cisApplication.getUCPMAPI ().getActiveAPI ().getDocumentCheckinAPI ();

//Create the context object
ISCSContext context =
 m_cisApplication.getUCPMAPI ().getActiveAPI ().createSCSContext ();
context.setUser ("sysadmin");
context.setAdapterName ("myadapter");

//Create the ISCSActiveContent object
ISCSActiveContent content = checkinAPI._createContent ("myadapter");
content.setTitle ("My Title");
content.setAuthor ("sysadmin");
content.setSecurityGroup ("Public");
content.setComments ("My Comments");
75

UCPM API Developer’s Guide Migrating from Version 7.2
//Create the content ID
ISCSActiveContentID contentID =
 m_cisApplication.getUCPMAPI ().getActiveAPI ()._createActiveContentID
 ("test_01", "myadapter");

//Build the content stream
File file = new File ("test.txt");
SCSContentFileStream stream = new SCSContentFileStream (file);

//Make the API call
ISCSDocumentCheckinResponse response =
 checkinAPI.checkinFileStream (context, content, contentID, stream);

Note the use of the ‘_create’ methods to create new versions of the
ISCSActiveContent and ISCSActiveContentID objects. Also note that the
SCSContentFileStream now takes a java.io.File object in its constructor, allowing for
easier creation of SCSContentFileStream objects.

Property names and data access
The UCPM objects are JavaBean objects. They follow the JavaBean standard for
property names, including the naming convention (i.e., no lowercase ‘d’ or ‘x’ in
front of the property name, as with content server property names).

Looking specifically at ISCSActiveContent, there are a number of properties
available on the object: title, author, type, etc. To get the title from such an object,
you would call:

activeContent.getTitle ();

Also, using the ISCSObject interface (which ISCSActiveContent implements), you can
call the getProperty () method and pass in the property name to the object:

activeContent.getProperty ("title").getValue ();

Note that the above call returns an ISCSProperty object, which allows you to
retrieve the value by using its accessor methods. Finally, because the content server
supports any number of properties, you can retrieve the property by the native
(content server) name by calling the getProperty () method:

activeContent.getProperty ("dDocTitle").getValue ();

These three calls are identical. They all return the same value internally and are all
mapped to the same property. The same is true for the setter versions of the
methods; calling setProperty (‘dDocTitle’, value) or setTitle (value) or setProperty
(‘title’, value) all result in setting the title property to the given value.

LWDataBinder and ISCSServerResponse

The LWDataBinder was the primary object used to hold the returned server
response from the content server. This object has been replaced in the UCPM Active
API by the ISCSServerResponse interface. The server response interface inherits
from ISCSObject and provides a more Java-friendly interface that supports the Java
Collection classes. The following table provides a mapping between the
LWDataBinder methods and the ISCSServerResponse methods:

LWDataBinder ISCSServerResponse

getResultSet (String name) getResultSet (String name)
76

UCPM API Developer’s Guide Migrating from Version 7.2
Most API calls will extend ISCSServerResponse and provide a specific
implementation for the call. For example, calling the getDocumentInformation ()
method on the ISCSActiveDocumentInformationAPI returns an
ISCSDocumentInformationResponse. This object extends ISCSServerResponse and
adds methods for getting the content object that was queried, the workflow
associated with the document, and a list of the revision history. The available
information from the returned service call is exposed in the returned interface and
all information is wrapped into ISCSObjects.

The following code is a sample of a 7.2 API call for document information to retrieve
a document title:

ISCSDocumentInfoCommandAPI infoAPI =
 (ISCSDocumentInfoCommandAPI)m_commandClient.getCommandFacade ().getCommandAPI
 ("document.information");
LWDataBinder dataBinder =
 infoAPI.getDocInfoByID (context, "12345");

//Get the document information result set
LWResultSet resultSet = dataBinder.getResultSet ("DOC_INFO");

//Get the title
dataBinder.first ();
String title = dataBinder.getStringValue ("dDocTitle");

Translating this to UCPM API calls results in the following:

ISCSActiveDocumentInformationAPI infoAPI =
 m_cisApplication.getUCPMAPI ().getActiveAPI ().getDocumentInformationAPI ();

ISCSActiveDocumentID documentID =
 m_cisApplication.getUCPMAPI ().getActiveAPI ()._createDocumentID ("12345");

ISCSDocumentInformationResponse response =
 infoAPI.getDocumentInformation (context, documentID);

String title = response.getContent ().getTitle ();

getLocalData (String name) getProperty (String name).getValue ()

getOptionList (String name) getOptionList (String name)

LWDataBinder ISCSServerResponse
77

UCPM API Developer’s Guide Glossary
Glossary

The following terms are used in this Stellent product. They are listed here in
alphabetical order.

Ant

Apache Ant. A Java-based build tool (http://ant.apache.org/).

API

Application Programming Interface. The specific method, prescribed by a computer
operating system or an application, by which a programmer writing a program can
make requests of the operating system or application.

applet

A J2EE component that typically executes in a web browser but can execute in a
variety of other applications or devices that support the applet programming model.

applet container

A container that includes support for the applet programming model.

attribute (XML)

A qualifier on an XML tag that provides additional information.

authentication

The process that verifies the identity of a user, device, or other entity in a computer
system, usually as a prerequisite to allowing access to resources in a system. The
Java servlet specification requires three types of authentication—basic, form-based,
and mutual—and supports digest authentication.

authorization

The process by which access to a method or resource is determined. Authorization
depends on whether the principal associated with a request through authentication
resides in a given security role. A security role is a logical grouping of users defined
by the person who assembles the application. A deployer maps security roles to
security identities, which may be principals or groups in the operational
environment.

authorization constraint

An authorization rule that determines who is permitted to access a web resource
collection.

basic authentication

An authentication mechanism in which a web server authenticates an entity via a
user name and password obtained using the web application's built-in
authentication mechanism.
78

UCPM API Developer’s Guide Glossary
binding (XML)

Generating the code needed to process a well-defined portion of XML data.

build file

The XML file that contains one or more asant targets. A target is a set of tasks you
want to execute. When starting asant, you can select which targets you want to
execute. When no target is given, the project's default target is executed.

business logic

Includes how we model objects in our application, how these objects are stored,
how these objects interact with each other, and who can access and update these
objects. It differs from presentation logic in that presentation logic is concerned how
we display these objects to a user.

caller principal

The principal that identifies the invoker of the enterprise bean method.

certificate authority

A trusted organization that issues public key certificates and provides identification
to the bearer.

Cascading Style Sheet

See CSS.

client-certificate authentication

An authentication mechanism that uses HTTP over SSL, in which the server and,
optionally, the client authenticate each other with a public key certificate that
conforms to a standard that is defined by X.509 Public Key Infrastructure.

Common Object Request Broker Architecture

See CORBA.

component

See J2EE component.

connection factory

See resource manager connection factory and JMS connection factory.

connector

A standard extension mechanism for containers that provides connectivity to
enterprise information systems. A connector is specific to an enterprise information
system and consists of a resource adapter and application development tools for
enterprise information system connectivity. The resource adapter is plugged in to a
container through its support for system-level contracts defined in the connector
architecture.
79

UCPM API Developer’s Guide Glossary
connector architecture

An architecture for integrating J2EE products with enterprise information systems. It
has two parts: a resource adapter provided by an enterprise information system
vendor and the J2EE product that the resource adapter plugs into. The architecture
defines a set of contracts that the resource adapter must support to plug into the
J2EE product (example are transactions, security, and resource management).

container (EJB)

See EJB container.

container-managed sign-on

The mechanism whereby security information needed for signing on to a resource is
supplied by the container.

container-managed transaction

A transaction whose boundaries are defined by an EJB container. An entity bean
must use container-managed transactions.

content (XML)

In an XML document, the part that occurs after the prolog, including the root
element and everything it contains.

context root

The name that gets mapped to the document root of a web application.

CORBA

Common Object Request Broker Architecture. A language-independent, distributed
object model specified by the Object Management Group (OMG).

create method

A method defined in the home interface and invoked by a client to create an
enterprise bean.

CSS

Cascading Style Sheet. A stylesheet used with HTML and XML documents to add a
style to all elements marked with a particular tag to ensure that such elements
display consistently in a web browser.

declarative security

The mechanisms used in an application that are expressed in a declarative syntax in
a deployment descriptor.

deployment descriptor

An XML file provided with each module and J2EE application that describes how
they should be deployed. The deployment descriptor directs a deployment tool to
deploy a module or application with specific container options and describes
specific configuration requirements that a deployer must resolve.
80

UCPM API Developer’s Guide Glossary
destination (JMS)

See JMS destination.

digest authentication

An authentication mechanism in which a web application authenticates itself to a
web server by sending the server a message digest along with its HTTP request
message. The digest is computed by applying a one-way hash algorithm to a
concatenation of the HTTP request message and the client’s password. The digest is
typically much smaller than the HTTP request and doesn’t contain the password.

distributed application

An application made up of distinct components running in separate runtime
environments, usually on different platforms connected via a network. Typical
distributed applications are two-tier (client-server), three-tier (client-middleware-
server), and multi-tier (client-multiple, middleware-multiple servers).

Document Object Model

An API for accessing and manipulating XML documents as tree structures. DOM
provides platform-neutral, language-neutral interfaces that enable programs and
scripts to dynamically access and modify content and structure in XML documents.

DOM

See Document Object Model.

EAR

An Enterprise Archive file, that is, a JAR archive that contains a J2EE application.

EJB

See Enterprise JavaBeans.

EJB container

A container that implements the EJB component contract of the J2EE architecture.
This contract specifies a run-time environment for enterprise beans that includes
security, concurrency, life-cycle management, transactions, deployment, naming,
and other services. An EJB container is provided by an EJB or J2EE server.

EJB home object

An object that provides the life-cycle operations (create, remove, find) for an
enterprise bean. The class for the EJB home object is generated by the container’s
deployment tools. The EJB home object implements the enterprise bean’s home
interface. The client references an EJB home object to perform life-cycle operations
on an EJB object. The client uses JNDI to locate an EJB home object.

EJB JAR file

A JAR archive that contains an EJB module.
81

UCPM API Developer’s Guide Glossary
EJB module

A deployable unit that consists of one or more enterprise beans and an EJB
deployment descriptor.

EJB object

An object whose class implements the enterprise bean’s remote interface. A client
never references an enterprise bean instance directly; it always references an EJB
object. The class of an EJB object is generated by a container’s deployment tools.

EJB server

Software that provides services to an EJB container. For example, an EJB container
typically relies on a transaction manager that is part of the EJB server to perform
the two-phase commit across all the participating resource managers. The J2EE
architecture assumes that an EJB container is hosted by an EJB server from the
same vendor, so it does not specify the contract between these two entities. An EJB
server can host one or more EJB containers.

EJB server provider

A vendor that supplies an EJB server.

element (XML)

A unit of XML data, de-limited by tags. An XML element can enclose other elements.

Enterprise JavaBeans

A component architecture for the development and deployment of object-oriented,
distributed, enterprise-level applications. Applications written using the Enterprise
JavaBeans architecture are scalable, transactional, and secure.

Extensible Markup Language

See XML.

filter

An object that can transform the header or content (or both) of a request or
response. Filters differ from web components in that they usually do not themselves
create responses, but, rather, modify or adapt requests to, and responses from, a
resource. A filter should not have any dependencies on a web resource for which it
is acting as a filter so that it can be composable with more than one type of web
resource.

filter chain

A concatenation of XSLT transformations in which the output of one transformation
becomes the input of the next.

form-based authentication

An authentication mechanism in which a web container provides an application-
specific form for logging in. This form of authentication uses Base64 encoding and
can expose user names and passwords unless all connections are over SSL.
82

UCPM API Developer’s Guide Glossary
group

An authenticated set of users classified by common traits such as job title or
customer profile. Groups are also associated with a set of roles. Every user that is a
member of a group inherits all the roles assigned to that group.

handle

An object that identifies an enterprise bean. A client can serialize the handle and
then later de-serialize it to obtain a reference to the enterprise bean.

home interface

One of two interfaces for an enterprise bean. The home interface defines zero or
more methods for managing an enterprise bean. The home interface of a session
bean defines create and remove methods, whereas the home interface of an entity
bean defines create, finder, and remove methods. (See also remote interface.)

HTML

Hypertext Markup Language. A markup language for hypertext documents on the
Internet. In addition to basic text formatting, HTML enables the embedding of
images, sounds, video streams, form fields, and references to other objects (by
means of URLs).

HTTP

Hypertext Transfer Protocol. The Internet protocol used to retrieve hypertext objects
from remote hosts. HTTP messages consist of requests from client to server and
responses from server to client.

HTTPS

HTTP layered over the SSL protocol (see SSL).

Hypertext Markup Language

See HTML.

Hypertext Transfer Protocol.

See HTTP.

initialization parameter

A parameter that initializes the context associated with a servlet.

J2EE

An environment for developing and deploying enterprise applications. The J2EE
platform consists of a set of services, application programming interfaces (APIs),
and protocols that enable the development, deployment, and management of multi-
tier, server-based applications. This edition of the Java 2 Platform encompasses
many specifications, including EJB, JMS, JSP and Servlets.
83

UCPM API Developer’s Guide Glossary
J2EE application

Any deployable unit of J2EE functionality. This can be a single J2EE module or a
group of modules packaged into an EAR file along with a J2EE application
deployment descriptor. J2EE applications are typically engineered to be distributed
across multiple computing tiers.

J2EE component

A self-contained functional software unit supported by a container and configurable
at deployment time. The J2EE specification defines several types of J2EE
components: application clients and applets that run on the client; Java servlets and
JSPs that run on the server; and EJBs that run on the server.

J2EE components are written in the Java programming language and are compiled
in the same way as any program in the language. The difference between J2EE
components and “standard” Java classes is that J2EE components are assembled
into a J2EE application, verified to be well formed and in compliance with the J2EE
specification, and deployed to production, where they are run and managed by the
J2EE server or client container.

J2EE module

A software unit that consists of one or more J2EE components of the same
container type and one deployment descriptor of that type. There are four types of
modules: EJB, web, application client, and resource adapter. Modules can be
deployed as stand-alone units or assembled into a J2EE application.

J2EE server

The runtime portion of a J2EE product. A J2EE server provides EJB or web
containers, or both.

J2SE

Java 2 Platform, Standard Edition. The core Java technology platform.

JAR

Java Archive. A platform-independent file format that permits many files to be
aggregated into one file.

Java 2 Platform, Enterprise Edition

See J2EE.

Java 2 Platform, Standard Edition

See J2SE.

Java Development Kit

See JDK.

Java Runtime Environment

See JRE.
84

UCPM API Developer’s Guide Glossary
Java Virtual Machine

See JVM.

Java Messaging Service

See JMS.

Java Naming and Directory Interface

See JNDI.

Java Secure Socket Extension

A set of packages that enable secure Internet communications.

JavaServer Pages

An extensible web technology that uses static data, JSP elements, and server-side
Java objects to generate dynamic content for a client. Typically, the static data is
HTML or XML elements, and in many cases the client is a web browser.

JavaServer Pages Standard Tag Library

A tag library that encapsulates core functionality common to many JSP applications.
JSTL has support for common, structural tasks such as iteration and conditionals,
tags for manipulating XML documents, internationalization and locale-specific
formatting tags, SQL tags, and functions.

JDK

Java Development Kit. A programming development environment for writing Java
applets and applications. It consists of a runtime environment that “sits on top” of
the operating system layer, as well as the tools and programming that developers
need to compile, debug, and run applets and applications written in the Java
language.

JMS

Java Messaging Service. An application program interface (API) that supports the
formal communication known as messaging between computers in a network.

JMS administered object

A preconfigured JMS object (a connection factory or a destination) created by an
administrator for the use of JMS clients and placed in a JNDI namespace.

JMS application

One or more JMS clients that exchange messages.

JMS client

A Java language program that sends or receives messages.

JMS connection factory

An object that enable JMS clients to create JMS connections.
85

UCPM API Developer’s Guide Glossary
JMS connection factory object

An object that encapsulates connection configuration information, and enables JMS
applications to create a connection object.

JMS connection object

An object that represents an open communication channel between an application
and the messaging system and is used to create a Session Object for producing and
consuming messages. A connection creates server-side and client-side objects that
manage the messaging activity between an application and JMS.

JMS destination

A JMS-administered object that encapsulates the identity of a JMS queue or topic.

JMS session object

An object that defines a serial order for the messages produced and consumed, and
can create multiple message producers and message consumers. The same thread
can be used for producing and consuming messages. If an application wants to have
a separate thread for producing and consuming messages, the application should
create a separate session for each function.

JMS provider

A messaging system that implements the Java Message Service as well as other
administrative and control functionality needed in a full-featured messaging product.

JMS queue

A queue that defines a point-to-point destination type.

JMS session

A single-threaded context for sending and receiving JMS messages. A JMS session
can be non-transacted or locally transacted, or participate in a distributed
transaction.

JMS topic

A topic that identifies a publish/subscribe destination type.

JNDI

Java Naming and Directory Interface. An API that provides naming and directory
functionality.

JRE

Java Runtime Environment. The JRE, also known as Java Runtime, is part of the
Java Development Kit (JDK), a set of programming tools for developing Java
applications. The JRE provides the minimum requirements for executing a Java
application; it consists of the Java Virtual Machine (JVM), core classes, and
supporting files.
86

UCPM API Developer’s Guide Glossary
JSP

See JavaServer Pages.

JSP action

A JSP element that can act on implicit objects and other server-side objects or can
define new scripting variables. A JSP action follows the XML syntax for elements,
with a start tag, a body, and an end tag; if the body is empty, it can also use the
empty tag syntax. The tag must use a prefix. There are standard and custom
actions.

JSP container

A container that provides the same services as a servlet container and an engine
that interprets and processes JSP pages into a servlet.

JSP custom action

A user-defined action described in a portable manner by a tag library descriptor and
imported into a JSP page by a taglib directive. Custom actions are used to
encapsulate recurring tasks in writing JSP pages.

JSP custom tag

A tag that references a JSP custom action.

JSP page

See JavaServer Page.

JSP tag file

A source file containing a reusable fragment of JSP code that is translated into a tag
handler when a JSP page is translated into a servlet.

JSP tag handler

A Java programming language object that implements the behavior of a custom tag.

JSP tag library

A collection of custom tags described via a tag library descriptor and Java classes.

JSPs

Several JavaServer Pages.

JSSE

See Java Secure Socket Extension.

JSTL

See JavaServer Pages Standard Tag Library.
87

UCPM API Developer’s Guide Glossary
JVM

Java Virtual Machine. An implementation of the Java Virtual Machine Specification
that interprets compiled Java binary code to perform the instruction of a Java
program.

keystore

A file containing the keys and certificates used for authentication.

message (JMS)

An asynchronous request, report, or event that is created, sent, and consumed by
an enterprise application and not by a human. It contains vital information needed
to coordinate enterprise applications in the form of precisely formatted data that
describes specific business actions.

message consumer

An object created by a JMS session that is used for receiving messages sent to a
destination.

message-driven bean

An enterprise bean that is an asynchronous message consumer. A message-driven
bean has no state for a specific client, but its instance variables can contain state
across the handling of client messages, including an open database connection and
an object reference to an EJB object. A client accesses a message-driven bean by
sending messages to the destination for which the bean is a message listener.

message producer

An object created by a JMS session that is used for sending messages to a
destination.

naming context

A set of associations between unique identifiers and objects.

naming environment

A mechanism that allows a component to be customized without the need to access
or change the component’s source code. A container implements the component’s
naming environment and provides it to the component as a JNDI naming context.
Each component names and accesses its environment entries using the java:comp/
env JNDI context. The environment entries are declaratively specified in the
component’s deployment descriptor.

Object Management Group

See OMG.

Object Request Broker

See ORB.
88

UCPM API Developer’s Guide Glossary
OMG

Object Management Group. A consortium that produces and maintains computer
industry specifications for interoperable enterprise applications (http://
www.omg.org/).

one-way messaging

A method of transmitting messages without having to block until a response is
received.

ORB

Object Request Broker. A library that enables CORBA objects to locate and
communicate with one another.

principal (authentication)

The identity assigned to a user as a result of authentication.

privilege

A security attribute that does not have the property of uniqueness and that can be
shared by many principals.

public key certificate

Used in client-certificate authentication to enable the server, and optionally the
client, to authenticate each other. The public key certificate is the digital equivalent
of a passport. It is issued by a trusted organization, called a certificate authority,
and provides identification for the bearer.

publish/subscribe messaging system

A messaging system in which clients address messages to a specific node in a
content hierarchy, called a topic. Publishers and subscribers are generally
anonymous and can dynamically publish or subscribe to the content hierarchy. The
system takes care of distributing the messages arriving from a node’s multiple
publishers to its multiple subscribers.

query string

A component of an HTTP request URL that contains a set of parameters and values
that affect the handling of the request.

queue destination (JMS)

See JMS queue.

RAR

Resource Adapter Archive. A JAR archive that contains a resource adapter module.

realm

In the J2EE server authentication service, a complete database of roles, users, and
groups that identify valid users of a web application or a set of web applications.
89

UCPM API Developer’s Guide Glossary
registry

An infrastructure that enables the building, deployment, and discovery of web
services.

registry provider

An implementation of a business registry that conforms to a specification for XML
registries (for example, ebXML or UDDI).

remote interface

One of two interfaces for an enterprise bean. (See also home interface.) The remote
interface defines the business methods callable by a client.

Remote Method Invocation

See RMI.

resource adapter

A system-level software driver that is used by an EJB container or an application
client to connect to an enterprise information system. A resource adapter typically is
specific to an enterprise information system. It is available as a library and is used
within the address space of the server or client using it.

A resource adapter plugs into a container. The application components deployed on
the container then use the client API (exposed by the adapter) or tool-generated
high-level abstractions to access the underlying enterprise information system. The
resource adapter and EJB container collaborate to provide the underlying
mechanisms—transactions, security, and connection pooling—for connectivity to
the enterprise information system.

resource adapter module

A deployable unit that contains all Java interfaces, classes, and native libraries,
implementing a resource adapter along with the resource adapter deployment
descriptor.

resource manager

Provides access to a set of shared resources. A resource manager participates in
transactions that are externally controlled and coordinated by a transaction
manager. A resource manager typically is in a different address space or on a
different machine from the clients that access it.

Note: An enterprise information system is referred to as a resource manager when it
is mentioned in the context of resource and transaction management.

resource manager connection

An object that represents a session with a resource manager.

resource manager connection factory

An object used for creating a resource manager connection.
90

UCPM API Developer’s Guide Glossary
RMI

Remote Method Invocation. A technology that allows an object running in one Java
virtual machine to invoke methods on an object running in a different Java virtual
machine.

role (security)

An abstract logical grouping of users that is defined by the application assembler.
When an application is deployed, the roles are mapped to security identities, such
as principals or groups, in the operational environment.

In the J2EE server authentication service, a role is an abstract name for permission
to access a particular set of resources. A role can be compared to a key that can
open a lock. Many people might have a copy of the key; the lock does not care who
you are, only that you have the right key.

role mapping

The process of associating the groups or principals (or both), recognized by the
container with security roles specified in the deployment descriptor. Security roles
must be mapped by the deployer before a component is installed in the server.

rollback

The point in a transaction when all updates to any resources involved in the
transaction are reversed.

Secure Socket Layer

See SSL.

security constraint

A declarative way to annotate the intended protection of web content. A security
constraint consists of a web resource collection, an authorization constraint, and a
user data constraint.

security context

An object that encapsulates the shared state information regarding security
between two entities.

server certificate

Used with the HTTPS protocol to authenticate web applications. The certificate can
be self-signed or approved by a certificate authority (CA). The HTTPS service of the
Sun Java System Application Server Platform Edition 8 will not run unless a server
certificate has been installed.

server principal

The operating system principal that the server is executing as.

service element

A representation of the combination of one or more connector components that
share a single engine component for processing incoming requests.
91

UCPM API Developer’s Guide Glossary
service endpoint interface

A Java interface that declares the methods that a client can invoke on a web service.

servlet

A Java program that extends the functionality of a web server, generating dynamic
content and interacting with web applications by using a request-response
paradigm.

servlet container

A container that provides the network services over which requests and responses
are sent, and also decodes requests and formats responses. All servlet containers
must support HTTP as a protocol for requests and responses, but can also support
additional request-response protocols, such as HTTPS.

A “distributed servlet container” can run a web application that executes across
multiple Java virtual machines running on the same host or on different hosts.

servlet context

An object that contains a servlet’s view of the web application within which the
servlet is running. Using the context, a servlet can log events, obtain URL references
to resources, and set and store attributes that other servlets in the context can use.

servlet mapping

Defines an association between a URL pattern and a servlet. The mapping is used to
map requests to servlets.

session

An object used by a servlet to track a user’s interaction with a web application
across multiple HTTP requests.

session bean

An enterprise bean that is created by a client and that usually exists only for the
duration of a single client-server session. A session bean performs operations, such
as calculations or database access, for the client. Although a session bean can be
transactional, it is not recoverable should a system crash occur. Session bean
objects can either be stateless or maintain a conversational state across methods
and transactions. If a session bean maintains state, then the EJB container manages
this state if the object must be removed from memory. However, the session bean
object itself must manage its own persistent data.

Simple Object Access Protocol

See SOAP.

SOAP

Simple Object Access Protocol. A lightweight protocol intended for exchanging
structured information in a decentralized, distributed environment. Using XML
technologies, it defines an extensible messaging framework containing a message
construct that can be exchanged over a variety of underlying protocols.
92

UCPM API Developer’s Guide Glossary
SSL

Secure Socket Layer. A security protocol that provides privacy over the Internet. The
protocol allows client-server applications to communicate in a way that cannot be
eavesdropped upon or tampered with. Servers are always authenticated, and clients
are optionally authenticated.

stateful session bean

A session bean with a conversational state.

stateless session bean

A session bean with no conversational state. All instances of a stateless session
bean are identical.

topic destination (JMS)

See JMS topic.

transaction attribute

A value specified in an EJB’s deployment descriptor that is used by the EJB
container to control the transaction scope when the enterprise bean’s methods are
invoked. A transaction attribute can have the following values: Required,
RequiresNew, Supports, NotSupported, Mandatory, or Never.

transaction isolation level

The degree to which the intermediate state of the data being modified by a
transaction is visible to other concurrent transactions, and data being modified by
other transactions is visible to it.

transaction manager

Provides the services and management functions required to support transaction
demarcation, transactional resource management, synchronization, and transaction
context propagation.

UDDI

Universal Description, Discovery and Integration. A platform-independent, XML-
based registry for businesses to list themselves on the Internet.

Unicode

A standard defined by the Unicode Consortium that uses a 16-bit code page that
maps digits to characters in languages around the world. Because 16 bits covers
32,768 codes, Unicode is large enough to include all the world’s languages, with
the exception of ideographic languages, such as Chinese, that have a different
character for every concept (http://www.unicode.org/).

Uniform Resource Locator

See URL.
93

UCPM API Developer’s Guide Glossary
Universal Description, Discovery and Integration

See UDDI.

Universal Standard Products and Services Classification

A schema that classifies and identifies commodities. It is used in sell-side and buy-
side catalogs and as a standardized account code in analyzing expenditure.

UNSPSC

See Universal Standard Products and Services Classification.

URL

Uniform Resource Locator. A standard for writing a textual reference to data on the
web. A URL looks like this: protocol://host/localinfo, where protocol specifies a
protocol for fetching the object (such as http or ftp), host specifies the Internet
name of the targeted host, and localinfo is a string (often a file name) passed to the
protocol handler on the remote host.

user data constraint

Indicates how data between a client and a web container should be protected. This
could be in the form of preventing either tampering with the data or eavesdropping
on it.

user (security)

An individual (or application program) identity that has been authenticated. A user
can have a set of roles associated with that identity, which entitles the user to
access all resources protected by those roles.

valid XML

An XML document that is both well formed and conforms to all the constraints
imposed by the specification. For example, it does not contain any tags that are not
permitted, and the order of the tags conforms to the specification.

virtual host

Multiple hosts plus domain names mapped to a single IP address.

W3C

World Wide web Consortium. The international body that governs Internet
standards (http://www.w3.org/).

WAR

Web Application Archive. A JAR archive that contains a web module.

web application

An application written for the Internet, including those built with Java technologies
such as JavaServer Pages and servlets, as well as those built with non-Java
technologies such as CGI and Perl.
94

UCPM API Developer’s Guide Glossary
A “distributed web application” uses J2EE technology written so that it can be
deployed in a web container distributed across multiple Java virtual machines
running on the same host or different hosts. The deployment descriptor for such an
application uses the distributable element.

web component

A component that provides services in response to requests; either a servlet or a
JSP page.

web container

A container provided by a web or J2EE server that implements the web component
contract of the J2EE architecture. This contract specifies a runtime environment for
web components that includes security, concurrency, life-cycle management,
transaction, deployment, and other services. A web container provides the same
services as a JSP container as well as a federated view of the J2EE platform APIs.

A “distributed web container” can run a web application that executes across
multiple Java virtual machines running on the same host or on different hosts.

web module

A deployable unit that consists of one or more web components, other resources,
and a web application deployment descriptor contained in a hierarchy of directories
and files in a standard web application format.

web server

Software that provides services to access the Internet, an intranet, or an extranet. A
web server hosts web sites, provides support for HTTP and other protocols, and
executes server-side programs (such as CGI scripts or servlets) that perform certain
functions. In the J2EE architecture, a web server provides services to a web
container. For example, a web container typically relies on a web server to provide
HTTP message handling. The J2EE architecture assumes that a web container is
hosted by a web server from the same vendor, so it does not specify the contract
between these two entities. A web server can host one or more web containers.

web service

An application that exists in a distributed environment, such as the Internet. A web
service accepts a request, performs its function based on the request, and returns a
response. The request and the response can be part of the same operation, or they
can occur separately, in which case the consumer does not need to wait for a
response. Both the request and the response usually take the form of XML, a
portable data-interchange format, and are delivered over a wire protocol, such as
HTTP.

well-formed XML

An XML document that is syntactically correct. It does not have any angle brackets
that are not part of tags, all tags have an ending tag or are themselves self-ending,
and all tags are fully nested.
95

UCPM API Developer’s Guide Glossary
XML

Extensible Markup Language. A markup language that allows you to define the tags
(markup) needed to identify the content, data, and text in XML documents.
96

UCPM API Developer’s Guide Index

Index
A
accessor methods 22
Active API

date format 31
DocumentCheckin 38
DocumentCheckout 39
explained 29, 41
interaction with servlets 35
ISCSActiveFileAPI 37
ISCSActiveSearchAPI 36
ISCSActiveWorkflowAPI 39
ISCSContext bean 9

Adapter configuration file 24
adapter configuration file

sample file 27
Adapter element 25
Ant

defined 78
API 63

defined 63, 78
method parameters 75
naming 74
retrieving 74

API calls 73
API object

ISCSActiveObject 30
ISCSServerResponse 30, 31

API objects, calling 21
applet container, defined 78
applet, defined 78
asynchronous commands 20
attribute (XML), defined 78
authentication, defined 78
authorization constraint, defined 78
authorization, defined 78

B
basic authentication, defined 78
binding (XML), defined 79
build file, defined 79
build property

api.identifier 66
api.package 66

build target
clean 65

compile 65
dist 65
jar 65

Building a command 71
business logic, defined 79

C
caller principal, defined 79
certificate authority, defined 79
checkinFileStream 75
checkinFileStream () method 75
CIS API

extending 5
CIS layer

extending 63
CISApplication 9
class

com.stellent.web.servlets.SCSCommandClientServ
let 32

com.stellent.web.servlets.SCSDynamicConverterS
ervlet 32

com.stellent.web.servlets.SCSDynamicURLServlet
32

com.stellent.web.servlets.SCSFileDownloadServlet
32

com.stellent.web.servlets.SCSFileTransferServlet
32

com.stellent.web.servlets.SCSInitialize 32
client-certificate authentication, defined 79
Command development kit 65
command execution flags 20
CommandBuilder SDK 64
commands

building 65
creating 68
creating an ICommand object 64
deploying 72
development kit 65
extending 63
ISCSActiveFileAPI file 63
SCSCommand class 64
SISCommand class 64

Common API
adapter node 57
common node 58
contribution node 58
97

UCPM API Developer’s Guide Index
explained 56
ISCSCommonContext 58
ISCSCommonContext bean 9
ISCSContent 61
ISCSContentPage objects 61
ISCSID 61
map node 58
metadata map 57

Common contribution 60
Common metadata maps 57
common method object

asynchronous commands 20
ICommandExecutionProperties 19
IContext 18

config element 25
connection factory, defined 79
connector architecture, defined 80
connector, defined 79
container-managed sign-on, defined 80
container-managed transaction, defined 80
content (XML), defined 80
Content Integration Suite

client mode 9
initialization 9
initializing in client mode 10
initializing in server mode 10
integrating in a standalone environment 18
integrating in a web environment 16
integrating in an application server environment

17
server mode 9
Simple Object Access Protocol (SOAP) 41
upgrading from version 7.2 73
Web Services Description Language 41

context object 74
IContext 18

context root, defined 80
CORBA, defined 80
create method, defined 80
CSS, defined 80

D
declarative security, defined 80
deployment descriptor, defined 80

digest authentication, defined 81
distributed application, defined 81
Document contribution 49
Document export 48
Document Object Model (DOM), defined 81
DocumentCheckin 38
DocumentCheckout 39

E
EAR, defined 81
EJB container, defined 81
EJB home object, defined 81
EJB JAR file, defined 81
EJB module, defined 82
EJB object, defined 82
EJB server provider, defined 82
EJB server, defined 82
element (XML), defined 82
Enterprise JavaBeans, defined 82

F
Federated search 59
filter chain, defined 82
filter, defined 82
Fixed API

adhoc query example 47
adhoc search 44
adhoc searches 46
application query 46
basic login 43
continuing a search 45
creating a package 53
getting the default set of content pages 48
getting the native set of content pages 49
ISCSFixedAdministrativeAPI 41
ISCSFixedContent object 48
ISCSFixedContentPage object 48
ISCSFixedDocumentAPI 41
ISCSFixedProcessAPI 41
ISCSFixedSearchAPI 41
ISCSFixedUserAPI 41
locking and unlocking a package 55
logging in to process 43
98

UCPM API Developer’s Guide Index
logging out 43
looking up a specific document 47
package objects 53
placing a package in flow 54
process profiles 52
prompted profiles 52
retrieving objects 42
saved search 43
saved search names 44
saved search prompts 45
searchable applications 46
setting package fields 54

form-based authentication, defined 82

G
getActivePropertyDescriptor method 31
getProperty() method 23, 30
Getting packages by profile 53
getUCPMAPI () method 8, 29, 41, 56
getUserPrincipalEnabled 35
getValue() method 23
group, defined 83

H
handle, defined 83
home interface, defined 83
HTML, defined 83
HTTP, defined 83
HTTPS, defined 83

I
IAcmeDocumentAPI 64
IAcmeInformationAPI 64
ICommand 63

defined 64
ICommand definition 64
ICommand object, creating 64
ICommandExecutionProperties 19
IContext bean 9
initialization 9

CIS 9
CISApplication 9
in client mode 10

in server mode 10
in version 7.2 73
in version 7.6 73
static methods 9

initialization parameter
getUserPrincipalEnabled 35
principal 35
principalLookupAllowed 35
principalLookupName 35
principalLookupScope 35

initialization parameter, defined 83
initializing

CIS client versus server 73
intialization

intializeClient () method 10
intializeClient () method 10
ISCSActiveDocumentCheckinAPI 75
ISCSActiveFileAPI 37
ISCSActiveObject object 30
ISCSActiveSearchAPI 36
ISCSActiveWorkflowAPI 39
ISCSCommonContext 19, 58
ISCSCommonContext bean 9
ISCSContext 74
ISCSContext bean 9
ISCSDocumentCheckinCommandAPI 75
ISCSFixedAdministrativeAPI 41
ISCSFixedContent object 48
ISCSFixedContentPage object 48
ISCSFixedDocumentAPI 41
ISCSFixedProcessAPI 41
ISCSFixedSearchAPI 41
ISCSFixedUserAPI 41
ISCSObject 21, 22

property methods 22
ISCSObjects 9
ISCSServerResponse 30, 76

getOptionList (String name) 77
getProperty (String name).getValue () 77
getResultSet (String name) 76

ISCSServerResponse object 31

J
J2EE application, defined 84
99

UCPM API Developer’s Guide Index
J2EE component, defined 84
J2EE module, defined 84
J2EE server, defined 84
J2EE, defined 83
J2SE, defined 84
JAR, defined 84
Java Secure Socket Extension, defined 85
JavaBean objects 76
JavaDoc tags 66

scs.command 66
scs.method 67

JavaDpc tags
scs.commandproperty 67

JavaServer Pages Standard Tag Library, defined 85
JavaServer Pages, defined 85
JDK, defined 85
JMS administered object, defined 85
JMS application, defined 85
JMS client, defined 85
JMS connection factory object, defined 86
JMS connection factory, defined 85
JMS connection object, defined 86
JMS destination, defined 86
JMS provider, defined 86
JMS queue, defined 86
JMS session object, defined 86
JMS session, defined 86
JMS topic, defined 86
JMS, defined 85
JNDI, defined 86
JRE, defined 86
JSP action, defined 87
JSP container, defined 87
JSP custom action, defined 87
JSP custom tag, defined 87
JSP tag file, defined 87
JSP tag handler, defined 87
JSP tag library, defined 87
JVM, defined 88

K
keystore, defined 88

L
LWDataBinder 76

getLocalData (String name) 77
getOptionList (String name) 77
getResultSet (String name) 76

M
message (JMS),defined 88
message consumer, defined 88
message producer, defined 88
message-driven bean, defined 88
metadata map 57

adapter node 57
common node 58
contribution node 58
map node 58

N
naming context, defined 88
naming environment, defined 88

O
OMG, defined 89
one-way messaging, defined 89
ORB, defined 89

P
principal 35
principal (authentication), defined 89
principalLookupAllowed 35
principalLookupName 35
principalLookupScope 35
privilege, defined 89
Process 51
property

api 67
name 67
parameters 67
returnType 67

property accessors 22
property collections 23
property object type 23
100

UCPM API Developer’s Guide Index
PropertyRetrievalException 22
public key certificate, defined 89
publish/subscribe messaging system, defined 89

Q
query string, defined 89

R
RAR, defined 89
realm, defined 89
registry provider, defined 90
registry, defined 90
remote interface, defined 90
resource adapter module, define 90
resource adapter, defined 90
resource manager connection factory, defined 90
resource manager connection, defined 90
resource manager, defined 90
RMI, defined 91
role (security), defined 91
role mapping, defined 91
rollback, defined 91

S
SCS Command Bean class 66
SCS Command components 66
scs.command 66

category attribute 66
name attribute 66
returnType attribute 66
service attribute 66

scs.commandproperty 67
scs.method 67
SDK components 5
Searching 43
security constraint, defined 91
security context, defined 91
server certificate, defined 91
server principal, defined 91
Server specific commands 64
service element, defined 91
service endpoint interface, defined 92
servlet container, defined 92

servlet context, defined 92
servlet mapping, defined 92
Servlet security 35
servlet, defined 92
Servlets and API interaction 35
session bean, defined 92
session, defined 92
setAsynchronous () method 20
setProperty () method 23
Simple Object Access Protocol (SOAP) 41
SOAP, defined 92
SSL, defined 93
standalone mode

initializing CIS in 10
stateful session bean, defined 93
stateless session bean, defined 93

T
transaction attribute, defined 93
transaction isolation level, defined 93
transaction manager, defined 93

U
UCPM API

Active API 29, 41
calling 9
calling methods 9
calls 21
Common API 56
explained 5, 8, 29, 41, 56
IContext bean 9
ISCSObject 21
methodology 9
upgrading from version 7.2 73

UCPM Objects 22
UCPM objects 76
UCPM SDK 5

components 5
UDDI, defined 93
Unicode, defined 93
Universal Standard Products and Services

Classification, defined 94
URL, defined 94
user (security), defined 94
101

UCPM API Developer’s Guide Index
user data constraint, defined 94
UTC time 31

V
valid XML, defined 94
value objects 22
version 7.2 API

compile error 73
warning messages 73

virtual host, defined 94

W
W3C, explained 94
WAR, defined 94
web application, defined 94
web component, defined 95
web container, defined 95
web module, defined 95
web server, defined 95
web service, defined 95
Web Services Description Language 41
WebLogic

initializing CIS for 10
well-formed XML, defined 95

X
XML, defined 96
102

	Cover page
	Contents
	Introduction
	Software development kit (SDK)
	CIS Administration Application Help system

	Understanding the UCPM API
	Accessing the UCPM API
	UCPM methodology
	CIS initialization
	Spring framework
	CIS Initialization strategy
	CIS Server initialization
	CIS Client Initialization

	Integration environments
	Web environment
	Application server environment
	Standalone environment

	Common method objects
	IContext
	ICommandExecutionProperties

	Interacting with the UCPM API
	Properties and the ISCSObject interface
	Property accessors
	Property object types
	Property collections

	Adapter configuration file
	Adapter element
	Config element
	Sample adapter configuration file

	Understanding the Active API
	Acccessing the Active API
	Understanding the Active API objects
	Interface ISCSActiveObject
	Interface ISCSServerResponse

	Understanding the Active API servlets
	Servlet parameters
	Servlet security
	Servlets and API interaction

	Using the Active APIs
	Active Search API
	Active File API
	Active Document APIs
	Active Workflow API

	Understanding the Fixed API
	Accessing the Fixed API
	Understanding the Fixed API objects
	Using the Fixed APIs
	Fixed User API
	Fixed Search API
	Fixed Document API
	Fixed Process API

	Understanding the Common API
	Accessing the Common API
	Common metadata maps
	Developing with the Common API
	Using the Common API
	Common Search API
	Common Document API

	Extending Commands
	About APIs
	ICommand definition
	Creating an ICommand object with the CommandBuilder SDK
	Command development kit
	SCS Command components

	Adding a new command
	Building a command

	Migrating from Version 7.2
	Initialization--START HERE
	API calls
	Property names and data access

	Glossary
	Index

